Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изобутилен синтезы на его основе

    Стереорегулярный изопреновый каучук (СКИ) также обладает высокой прочностью, эластичностью, клейкостью, низким теплообразованием и хорошим сопротивлением к старению. По эластичности СКИ превосходит СКД и приближается к натуральному каучуку. Развитие производства СКИ прежде всего зависит от наличия ресурсов дешевого сырья для синтеза изопрена. Этими источниками сырья являются изопентан, изобутилен и формальдегид, а также пропилен. Наиболее просто технологически синтез изопрена осуществлялся путем дегидрирования изопентана, поэтому на основе последнего будет организовано промышленное производство изопрена. [c.340]


    Основы управления процессом О-алкилирования метанола изобутиленом. Важными оперативными параметрами, влияющими на выход и качество МТБЭ, являются температура, давление, объемная скорость подачи сырья и соотношение метанол изобутен. Закономерность влияния этих параметров на синтез МТБЭ примерно идентична влиянию их на процесс С-алкилирования изобутана бутенами. Ниже приводим оптимальные пределы режимных параметров синтеза МТБЭ  [c.260]

    В промышленности органического синтеза применяется большое количество мономеров, получаемых на основе нефтяного газа, поэтому всех их перечислить не представляется возможным. Наряду с этим нельзя не отметить газообразные низкомолекулярные олефиновые углеводороды, получившие огромное распространение в качестве мономеров органического синтеза. К ним относятся этилен, пропилен, изобутилен, бутадиен (дивинил). На их основе в настоящее время производятся важнейшие химические продукты. [c.255]

    Особенно большую роль сыграли каталитич. методы в развитии процессов органич. синтеза. Широкое промышленное использование получило отверждение жиров путем каталитич. гидрогенизации соединений, содержащих двойные связи. Для этого процесса было предложено большое число различных катализаторов, гл. обр. па основе металлич. никеля. Крупным успехом явились разработка и реализация произ-ва каучука синтетического, основанного на превращении этилового спирта в дивинил. Каталитич. методами производятся и все остальные мономеры, используемые в произ-ве синтетич. каучука, — стирол, изобутилен, изопрен и т. п. [c.231]

    Сырьем для их получения служат водород, окись углерода, метан и его гомологи, этилен, пропилен, н-бутилен, изобутилен, ацетилен, бензол, толуол, нафталин и др., получаемые при переработке жидкого, твердого и газообразного топлив. В производстве синтетических органических продуктов используются процессы окисления и восстановления, гидрирования и дегидрирования, гидратации и дегидратации, сульфирования, нитрования, галоидирования и др. На их основе осуществляется синтез самых различных соединений, служащих сырьем для получения полимеров, синтетических красителей, ядохимикатов, смазочных, моющих, душистых и лекарственных веществ и т. д. Большинство органических процессов протекает в присутствии катализаторов. [c.320]

    В СВЯЗИ С разработкой диоксанового синтеза изопрена, конденсация формальдегида с изобутиленом (и другими непредельными углеводородами С4) была изучена весьма детально большим числом исследователей в Германии, США, несколько позднее в Советском Союзе, Франции, Японии и других странах. Первое промышленное производство изопрена на основе реакции Принса было создано в СССР в 1964—1965 гг. В настоящее время по советской технологии ежегодно выпускаются сотни тыс. т изопрена. В Японии в 1973 г. было объявлено о производстве изопрена на установке мощностью 30 тыс. т/год на основе технологии диоксанового синтеза [375]. [c.219]


    Сополимеры диеновых углеводородов и моноолефинов. Наиболее исследованы сополимеры диеновых углеводородов с изобутиленом, на основе которых производится бутнлкаучук. Синтез этих сополимеров является экономически выгодным, так как позволяет использовать дешевый готовый изобутилен вместо синтетических бутадиена или изопрена. [c.511]

    Взаимодействие непредельных углеводородов с формальдегидом в кислой среде с получением циклических формалей (диоксанов) было впервые изучено голландским химиком Принсом в 1917— 20 гг. [1]. В середине 1930-х гг. в Германии и в США возник инте рес к этой реакции с точки зрения использования диоксанов для последующего получения на их основе диеновых углеводородов. Уже тогда наибольщее внимание уделялось реакции формальдегида с изобутиленом с образованием 4,4-диметил-1,3-диоксана (ДМД), каталитическое расщепление которого приводит к получению изопрена. Однако эти исследования были еще весьма далеки от стадии технической разработки. Вскоре после окончания второй мировой войны интенсивные исследования диоксанового синтеза проводились кроме упомянутых стран также во Франции, Англии и несколько позднее в Японии. Работы Французского института нефти привели к созданию оригинальной технологии, которая отрабатывалась на опытной установке в г. Лаке [2]. О создании собственного метода позже объявила также фирма Байер (ФРГ) [3]. Однако промышленной реализации оба эти метода не получили. В 1973 г. появилась первая информация об освоении рассматриваемого процесса за рубежом — пуске промышленной установки по получению изопрена двухстадийным синтезом из изобутилена и формальдегида в Японии (фирма Курарей ) [4]. [c.696]

    Прошло немногам более десяти лет с момента выхода в свет монографии Изобутилен и его полимеры , но внимание к этой проблеме в мировой и отечественной научной и технической литературе не пропадает. За этот период (1985-1999 гг.) опубликованы тысячи оригинальных статей и патентов, что свидетельствует о важности и актуальности этого раздела макромолекулярной химии. Прогресс в этой области знаний характеризуется как заметным количественным наполнением экспериментальных данных, так и качественно новыми идеями и научными направлениями. Подобная ситуация не случайна. Помимо общеизвестного использования изобутилена для получения полимеров на его основе (олиго- и полиизо-бутилены, бутилкаучуки, сополимеры изобутилена с бутенами, стиролом и др.), а также алкилфенолов, с его участием осуществляется синтез и других технически важных продуктов метил-трет-бутилового эфира, метакриловой кислоты, метакрилатов, алифатических диаминов, ряда инсектицидов и т.д. Расширяющиеся области применения обусловливают непрерывный рост потребности в изобутилене. Только в США в 1995 г. дефицит изобутилена составлял порядка 8 млн т. [c.3]

    Как уже отмечалось, инициирующие свойства электрофильных катализаторов определяются мерой кислотных свойств. Достаточно активны и селективны каталитические системы на основе кислот Льюиса и слабых протонодоноров (Н2О, ROH), отличающиеся пониженной кислотной силой. Их использование решает, как правило, задачу синтеза промышленных марок ПИБ практически из любого сырья, в частности из смесей углеводородов С4. К слову, в этом случае открывается возможность решения проблемы экономичного комплексного использования всех компонентов фракции углеводородов С4 [2,5, 29 . Например, в интервале 210-260 К в присутствии И Л1С1з ,, в реакцию вступает практически лишь изобутилен. [c.305]

    Этилен, пропилен и изобутилен могут быть использованы непосредственно для получения полимеров или переработаны в другие мономеры 18—20) (схемы 1 и 2). Несомненный интерес представляет синтез метакриловой кислоты и ее производных на основе изобутилена  [c.32]

    Y на алюмосиликате, содержащем Ln, при 135°С с выходом 90-94 % получен 1,2-диметил-4-тре/и-бутилбензол, который может быть использован для синтеза 4-тп/>е/п-бутилфталевой кислоты и на ее основе фталоцианиновых пигментов, пластификаторов, фотоматериалов [201]. 1,2-Диметил-4-/гаре/тг-бутилбензол можно получать также алкилированием о-ксилола изобутиленом при 190°С и давлении 2.2 МПа на цеолите Н-Е8М-12/А120з[202]. [c.245]

    Наряду с производством синтетических материалов и поверхностноактивных веществ большое значение имеет еще производство таких химических полупродуктов, на основе или при участии которых осуществляется органический синтез. Главнейшими из них являются спирты — метиловый, этиловый, изопропиловый, бутиловые и высшие спирты, эти-ленгликоль, синтетический глицерин, альдегиды и кетоны — ацетальдегид и высшие альдегиды, ацетон, метилэтилкетон и другие кетоны, окиси олефинов — окись этилена, окись пропилена, карбоновые кислоты, уксусная кислота, синтетические жирные кислоты, ароматические дикарбоно-вые кислоты, адипиновая кислота, фенолы — фенол, алкилфенолы, двухатомные фенолы, полупродукты для СК, пластмасс и синтетических волокон — бутадиен и изопрен, изобутилен, чистые олефины от С5Н10 до СшНзг, стирол, дивинилбензол и а-метилстирол, акрилонитрил и акрилаты, аминокислоты и канролактам, галоидопроизводные — дихлорэтан, хлористый этил, тетрафторэтилен, перфторолефины и парафины, ядохимикаты (гексахлорциклогексан, ДДТ и др.). [c.33]


    Наиболее ценными компонентами этой фракции являются изобутилен и дивинил, поскольку они могут быть использованы в качестве мономеров для синтеза изобутжл- я дивинил-каучуков. До недавнего времени для определения этих углеводородов на предприятии пользовались исключительно химическими методами. Изобутилен определялся по методу А. Ф. Добрянского [1, 10] путем избирательного поглош,ения 68%-ной серной кислоты, а дивинил по Долгонлоску [11] путем гидрирования его в присутствии палладиевого катализатора. Более эффективным методом анализа бутиленовой фракции оказался объемно-хроматографический метод [3—5], на основе которого в институте химии при ГГУ был разработан универсальный газоанализатор типа Х-2 [12], позволяющий производить из одной пробы полный анализ как пиролизного газа, так и всех его фрах ций, в частности бутиленовой. Это достигается последовательным исиользованием четырех хроматографических колонок. [c.227]

    Работы А. М. Бутлерова (1828—1886) в области полимеризации, изомеризации и гидратации органических непредельных соединений послужили основой для создания многих новых методов органического синтеза. В 1867 г. им был получен синтетический изобутилен путем дегидратации третичного бутилового спирта (триметилкарбинола) при обработке последнего серной кислотой. В 1873 г. А. М. Бутлеров показал, что изобутилен в присутствии серной кислоты способен полпмеризоваться. Это открытие является основой современных способов выделения изобутилена из газов срекинга и пиролиза нефти. В 1877 г. им же был применен в качестве катализатора фтористый бор для полимеризации пропилена. Этот катализатор в настоящее время применяется для полимеризации изобутилена в производстве полиизобутиленов (оппанол в Германии и вистанекс в США), а также при получении синтетического изобутилен-изопренового каучука (бутилкаучук в США). [c.15]

    Несколько серий опытов было проведено на пилотной установке. Основными элементами установки являлись автоклав с быстроходной электромагнитной мешалкой турбинного типа и двухступенчатый поршневой компрессор для сжатия и подачи ВГФА. Последний отбирался из линии со II ступени парциальной конденсации. В автоклав загружался изобутилен или изобутан-изобутиленовая фракция, а также катализатор. Опыты проводились по полунепрерывной схеме, в условиях аналогичных лабораторным. Компри-мирование ВГФА (до 4—5 кгс/см ) требовалось для преодоления собственного давления паров углеводородов С4. Предварительные опыты показали, что во избежание отложения полимера на рабочих поверхностях компрессора и коммуникаций температура стенок должна быть не ниже 150 °С [203], для чего компрессор погружали в масляную ванну, снабженную нагревателем и терморегулятором. Описанная реакционная система оказалась вполне работоспособной в результате проведенных опытов была подтверждена принципиальная возможность проведения синтеза ДМД и непредельных спиртов на основе изобутилепа и ВГФА. Однако полностью преодолеть трудности и недостатки этого варианта технологии в описанных опытах не удалось. Место ввода ВГФА в реактор довольно быстро зарастало полимером, по-видимому, в результате попадания кислоты (катализатора). Целевая реакция протекала с недостаточной селективностью количество побочных продуктов было соизмеримо с суммарным количеством ДМД и непредельных спиртов. [c.87]

    На основе использования бутана была создана совершенно новая отрасль химической технологии алифатических сседипенин. Разнообразные синтезы на основе бутана уже осуществлены в промышленных масштабах в США и начинают применяться в Германии и других странах. Перед использованием углеводороды С должны быть разделены на w-бутан и изсбутан (см. табл. 10, стр. 225), из которых затем получают соответственно н-бутилен и изобутилен. [c.232]

    В 1956—1960 гг. М. И. Фарберов с сотрудниками, начавшие работы в этой области в 1940-е годы, опубликовали серию статей по синтезу диенов из олефинов и альдегидов Г258—264]. Было показано, что в присутствии серной кислоты изобутилен и формальдегид реагируют с образованием 4,4-диметилдиоксана-1,3 [258, 259], который затем превраш ается в изопрен [261, 264]. В 1959 г. советские [262] и французские ученые [265] сообщили об опытных испытаниях процесса получения изопрена на основе изобутилена и формальдегида. Лишь после этого процесс синтеза диенов, основанный на реакции Принса, заинтересовал американских химиков [266]. [c.179]

    При синтезе 3,3 -ди(хлорметил)оксациклобутана, являющегося основой для получения ценного полимерного материала — пентапласта, из трихлоргидрина пентаэритрита, наряду с основными продуктами синтеза, мономер может содержать такие примеси, как хлористый изобутилен, 3,3 -метил(хлорме-тил)оксациклобутан, 2,6-диоксаспиро-3,3 -гептан, дихлораце-тон. [c.90]

    Так, например, при получении каталитическим алкилированием п-крезола изобутиленом 2-трет.бутил-п-крезола — одного из важнейших промежуточных продуктов в синтезе бис(оксифенилалкил)алканов и сульфидов [6, 20, 21] после выделения кристаллического 2-трет.бутил-п-крезола остается жидкая смесь п-крезола, 2-трет.бутил-п-крезола, ионола и эфиров алкилфенолов. Разделение этой смеси сложно и экономически нецелесообразно. На основе изучения частных реакций разработан способ переалкилирования (точнее — пропорционирования) при нагревании с серной кислотой или катионитом происходит следующая реакция  [c.61]

    Как известно, А. М. Бутлеров предложил единственно правильную и плодотворную теорию строения органических соединений. Химия ненасыщенных углеводородов, которая лежит в основе многих процессов переработки углеводородного сырья, создана трудамр Бутлерова и его учеников. Бутлеров впервые синтезировал изобутилен, диизобутилен, триизобутилен и ряд других олефинов изостроения, изучил их различные реакции, в частности реакцию полимеризации олефинов. Бутлеров первый исследовал процесс гидратации этилена и других олефинов. Химические свойства олефиновых углеводородов стали предметом исследования последователей Бутлерова. Общеизвестна работа А. П. Эльтекова в области алкилирования олефинов. Олефины являются наиболее ценным сырьем для промышленности органического. синтеза, и поэтому большое значение имеют исследования в этой области, в частности открытая С. С. Наметкиным реакция дегидрогидрополимеризации. [c.4]


Смотреть страницы где упоминается термин Изобутилен синтезы на его основе: [c.219]    [c.25]    [c.299]    [c.71]    [c.677]    [c.71]    [c.231]    [c.111]   
Основы технологии органических веществ (1959) -- [ c.233 , c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Изобутилен



© 2025 chem21.info Реклама на сайте