Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропен также Пропилен

    Олефины, содержащиеся в продуктах крекинга и особенно в крекинг-газах, являются хорошим и легко доступным для производства сырьем. Для увеличения ресурсов олефинового сырья парафины или более тяжелые фракции специально подвергают крекированию (пиролизу). Таким образом, этилен получается в результате крекинга различных газов С2—С4 (этан, пропан, бутан) и жидких фракций (газойль, лигроин и мазут). Пропилен получается при термическом и каталитическом крекинге лигроинов и газойлей, а также из пропана и бутана. [c.577]


    Этилен получают из продуктов переработки нефти, чаще всего термическим разложением смеси этана и пропана при 800 °С в трубчатых печах. Наряду с этиленом образуются также пропилен, бутилен, бутадиен, ацетилен и другие газы. Для получения индивидуальных соединений высокой чистоты (не менее .9,9%) производится их очистка от серусодержащих соединений, влаги, ацетилена и других примесей, а затем последовательная низкотемпературная ректификация. Примеси снижают скорость полимеризации этилена и ухудшают качество полимера. [c.10]

    Анализ проводят на самодельном объемно-хроматографическом газоанализаторе (рис. 51). Адсорбционная колонка / изготовлена из тугоплавкого стекла пирекс с внутренним диаметром 10 мм и длиной рабочей части 500 мм. Ее наполняют силикагелем МСК Воскресенского химкомбината, предварительно обработанным химически чистой концентрированной соляной кислотой и 0,1 н. раствором едкого кали, поперечник зерен силикагеля 0,25—0,5 мм. Колонка предназначена для раздельного оп- ределения этана, этилена, пропана, суммы пропилен + бутан + изобутан, суммы бу-тиленов, а также для отделения первой фракции, содержащей метан, воздух и водород. Колонка снабжена электрическим нагревателем (нихром). Если необходимо измерить температуру выхода отдельных компонентов газовой смеси, то к нижней части колонки припаивают тройник. Один конец тройника предназначен для ввода термопары в колонку, другой конец, присоединенный к барботажной бюретке, — для выхода газа. [c.139]

    Из таблицы видно, что если в этом случае применить аммиак, то скорость циркуляции хладагента будет минимальной, а если использовать пропилен или пропан, то потребуется меньшая мощность компрессора. Табл. 16 иллюстрирует также влияние температуры конденсации на потребляемую мощность компрессора и скорость циркуляции хладагента. Повышение температуры конденсации на 16,7° С (с 35 до 51,7° С) приводит к увеличению необходимой мощности а 60% для пропана и на 43% для аммиака. Отсюда следует, что, во-первых, для уменьшения эксплуатационных расходов температура конденсации должна поддерживаться минимальной и, во-вторых, если требуется более высокая температура конденсации, лучше применять аммиак, а не пропан. Аммиак сравнительно редко применяется в качестве хладагента из-за резкого запаха его. Однако его несложно применять в аппаратуре, изготовленной из обычной стали и не имеющей деталей из меди и. латуни. Кроме того, аммиак, [c.186]


    Разрыв углерод-углеродной связи ведет к образованию углерода, метана и других продуктов расщепления. Превращение н-бутана в н-бутилены, изобутана в изобутилен, пропана в пропилен и этана в этилен достигает 90—95% теоретического. Процесс дает также практически чистый водород (более чем 90 /о чистоты). Он получается в количестве, равном объему олефина, в соответствии с приведенным выще уравнением. В работе приведены описание химизма и термодинамики реакции, идентификация продуктов реакции и приготовление катализатора. Процесс обычно проводится под давлением около одной атмосферы, при температуре от 500 до 700° с объемными скоростями от 500 до 10000 и выше в зависимости от перерабатываемого сырья. [c.701]

    Исходным сырьем для синтеза полиолефинов служат непредельные углеводороды — этилен, пропилен, бутилен и другие высшие олефины, получающиеся при термической переработке нефти,, а также переработке природного газа. Выход олефинов существенно зависит от условий проведения процесса. Максимальное количество олефинов образуется при термическом крекинге нефти, сущность которого заключается в расщеплении высших углеводородов на углеводороды с меньшим молекулярным весом. Процесс проводится при температуре 450—550°С и давлении 5—50 ат. Он сопровождается разложением высших углеводородов с образованием свободных радикалов. Поэтому наряду с деструкцией происходит рекомбинация свободных радикалов и получаются продукты более сложного строения. Например, при крекинге пропана получается пропилен, этилен, метан и высшие углеводороды [c.12]

    Было показано, что ацетилен при пиролизе пропана получается в результате расщепления первичного продукта реакции — этилена и, возможно, пропилена. Представляется более вероятным, что перед образованием ацетилена пропилен также разлагается на этилен и метан. [c.87]

    Широкий спрос существует также на нормальный и изобутан первый применяется в производстве бутадиена и других химических продуктов, второй — для алкилирования олефинов с целью получения компонентов бензина. В силу последних обстоятельств в настоящее время жидкие газы, выпускаемые на рынок, в основном состоят из пропана. В соответствии со спецификацией Национальной американской ассоциации по производству газового бензина [404] не исключается присутствие пропиленов в товарном пропане и бутиленов — в товарном бутане впрочем, эти олефины в нефтепереработке используются в качестве источника получения моторных топлив или химических продуктов. Спецификации включают требования по составу, содержанию воды и сернистых соединений и по упругости паров. [c.450]

    Для производства полимерных материалов необходимы следующие непредельные углеводороды этилен, пропилен, бутилен, пентен, ацетилен, пропин, пропа-диен, бутадиен и др., а также синтез-газ (окись углерода и водород) и чистый водород. Исходными веществами являются природные и попутные газы, нефть, твердые горючие ископаемые и продукты их переработки. [c.7]

    Форма зависимости начальной скорости от концентрации ингибитора соответствует уравнению (7), которое было предложено и обосновано нами на примерах исследований тормозящего влияния пропилена и изобутилена на крекинг этана, пропана и бутанов [46, 67, 68, 54—58]. В этих работах было также показано, что пропилен и изобутилен замедляют распад каждого из алканов (пропана и бутанов) практически до одинакового предела скорости, разного для различных алканов [54—58]. [c.41]

    Кажущаяся длина цепи в крекинге изобутана также уменьшается с увеличением температуры и находится на пределе, соответствующем пределу самоторможения продуктами (пропилен, изобутилен). Колебания около этого предела незначительны. К сожалению, пока отсутствуют более подробные данные, позволяющие выявить роль побочных реакций в образовании пропана. [c.104]

    При замене бензина СНГ необходимость в антидетонаторах отпадает. Смесь СНГ — воздух чисто газовая, поэтому тетраэтил или тетраметил свинца, являющийся жидкостью, не может быть подан в виде суспензии в газовый поток. К счастью, большинство компонентов СНГ обладают повышенными антидетонационными качествами. Необходимо отметить, что для работающих на СНГ двигателей имеются ограничения по максимальной степени сжатия, которая характеризует безопасную работу, и что такие компоненты СНГ, как пропилен и бутилен, можно добавлять в небольших количествах, особенно для тех двигателей, основное топливо которых имеет моторное октановое число более высокое, чем экспериментальное (табл. 44). Следует также отметить, что у пропана экспериментальное и моторное октановые числа значительно выше, чем у замещаемого бензина. Это означает, что двигатели, работающие на пропане, могут иметь высокую степень сжатия, а следовательно, и более высокий, чем у бензинового двигателя, к. п. д. При переводе на СНГ в двигателе можно увеличить степень сжатия при использовании более мелкой головки блока или куполообразных поршней. Степень сжатия карбюраторного двигателя, рассчитанного на использование только СНГ, должна быть сразу же повышена. [c.215]


    Раньше попутные газы не находили применения и при добыче нефти сжигались факельным способом. В настояш,ее время их стремятся улавливать и использовать как в качестве топлива, так и, главным образом, в качестве ценного химического сырья. Из попутных газов, а также газов крекинга нефти путем перегонки при низких температурах получают индивидуальные углеводороды. Из пропана и бутана путем дегидрирования получают непредельные углеводороды — пропилен, бутилен и бутадиен, из которых затем синтезируют каучуки и пластмассы. [c.305]

    Раньше попутные газы не находили применения и при добыче нефти сжигались факельным способом. В настоящее время их стремятся улавливать и использовать как в качестве топлива, так и, главным образом, в качестве ценного химического сырья. Из попутных газов, а также газов крекинга нефти (стр. 362) путем перегонки при низких температурах получают индивидуальные углеводороды. Из пропана и бутана путем дегидрирования (отщепления атомов водорода от исходного углеводорода при нагревании в присутствии катализатора) получают непредельные углеводороды — пропилен, бутилены и бутадиен, из которых затем синтезируют каучуки и пластмассы. [c.363]

    Поскольку метан является сравнительно инертным углеводородом, особый интерес представляет непосредственное соединение метана с алкенами. Вследствие цепного характера реакции метана с пропиленом было принято решение исследовать и более простую систему метан—этилен. При общем давлении 55 ат облучение кобальтом-60 инициировало цепное алкилирование метана этиленом уже при сравнительно низкой температуре (343° С). Совершенно неожиданно при температуре выше 427° С термическая реакция также оказалась сравнительно быстрой. Это тем более удивительно, что при высоких температурах облучение оказывает весьма слабое дополнительное влияние. Реакция эта представляет собой эффективную цепную реакцию, поскольку при 343—427° С радиационный выход для реакции образования углеводородов Сз и выше лежал в пределах 1200—5600. Образующиеся продукты состояли главным образом из продукта присоединения пропана, алкенов Сз и выше, изопентана (вторичный продукт присоединения) и изобутана (перечислены в последовательности убывающих количеств). Эти данные для периодических опытов с облучением кобальтом-60 интенсивностью 0,12. 10 раЗ/ч приведены в табл. 8, где для сравнения показаны также результаты термического алкилирования. [c.133]

    Пропилен — также газообразный углеводород. Его формула СНг = СН — СНз. Его получают в больших количествах пиролизом пропана. Пропилен широко используют для получения полимеров, растворителей, каучуков и других веществ. [c.90]

    Для осуществления реакции пропана с пропиленом требуется более высокое давление [32]. При давлении 440 ат, температуре 505° и молярном отношении 6,5 был получен жидкий продукт (с выходом 160% вес. на исходный олефин теоретический выход гексанов 205% вес. на пропилен), который содержал 17,7% 2-метилпентан а и 5,4% к-гексапа. Присутствовало также около 18,0% 2,3-диметилбутана, образование которого не предполагалось. Образование этого углеводорода можно, вероятно, объяснить взаимодействием двух извпропильпых радикалов или же конденсаций изопропильного радикала с пропиленом — присос- [c.306]

    В промышленной практике сравнительно редко встречаются бидарные смеси без примесей более легких или более тяжелых компонентов. Тем не менее, технологический расчет многих процессов и аппаратов может быть выполнен на основе представления разделяемой смеси в виде бинарной. В практике нефтегазопереработки и нефтехимии к таким процессам относятся разделение смеси легких непредельных углеводородов с соответствующими предельными углеводородами — этана с этиленом и пропана с пропиленом разделение смесей бутанов или пентанов получение ароматических углеводородов из смесей бензола и толуола, этил-бензола и ксилолов и т. д. Кроме того, на основе бинарных смесей ключевых компонентов рассчитывается также разделение многокомпонентных смесей (см. п. 5 данной главы). [c.30]

    А12О3 даЗЮа г/НаО, гдеМе — металл 16 — УП1 групп периодической системы (в том числе Ag), п— степень окисления этого металла, w и у — число молей 5102 и НаО соотношение Ме А1 равно 0,5—1,0 г-экв на 1 г-атом А1. Конверсию алканов ведут в смеси с низшими олефинами (этилен, пропилен мол. отношение олефин ал-кан = 0,15—1,5) при 120—160° С, 2—13 бар и времени контакта 5—20 сек [177]. В другом патенте [1781 рекомендуется катализатор дегидрирования насыщенных или олефиновых углеводородов, состоящий из смеси соединений щелочного металла (Ы, К, МаХ соединений щелочноземельного металла (Са, 5г, Ва), соединения Ag и (или) соединения редкоземельного элемента. Используются окиси, гидроокиси, карбонаты, сульфаты, бромиды перечисленных металлов. К смеси добавляются также соединения переходных металлов 2г, Т1, V, Сг, Мо, Мп, Ре, Со, N1, Рс1, Си и А отношение щелочной металл переходный металл редкоземельный элемент составляет 4 1 1. Окись серебра (возможно превращение в процессе реакции в металлическое серебро) исследовалась в числе окисей других металлов как катализатор дегидрирования пропана в пропилен. Однако было показано, что Ag20 менее селективна в данном случае, чем иОз [77]. [c.172]

    В первом опыте в колонку, содержавшую пористое стекло марки 2, впускали смесь пропана с пропиленом. Содержание пропилена в смеси составляло около 5%. На выходе из колонки газ состоял только из пропана. Во втором опыте в тот же образец пористого стекла впускали смесь бутана (около 30%) с бутиленом. На выходе из колонки был получен бутан с небольшой примесью бутилена. При разделении смеси пропан — пропилен на стекле марки 6 на выходе из колонки также получен чистый иронан, а на стекле марки 7 из бутан-бутиленовой смеси получен ацетилен — бутилен, на пористом стекле марки 2 был получен ацетилен. [c.196]

    Растворимость углеводородных масел в сжатых газах определял впервые Альнер [122], а впоследствии Гамбург [123], Т. П. Жузе и Г. Н. Юшкевич [124] провели подробное исследование растворимости тяжелых нефтяных остатков (мазутов, гудронов, крекинг-остатков) в некоторых углеводородных газах этилене, пропилене, пропане и смесях пропана с пропиленом. Выяснено, что наиболее сильными растворителями этих продуктов являются пропан и особенно пропилен. Изучен также групповой состав фракций, растворяющихся в этих газах при различных давлениях. [c.474]

    Способностью пропана и пропилена по-разному растворять различные группы углеводородов, вероятно, можно объяснить и то, что растворимость мазута, содержащего большое количество нарафино-нафтеновых углеводородов (30%), в пропане при давлениях до 125 ат выше, чем в пропилене. У гудронов же, обогащенных ароматическими углеводородами, эти величины значительно выше, в случае пропилена — во всем интервале давлений. Уже отмечалось, что смесь пропана с пропиленом (3 1) является более эффективным газовым растворителем гудрона, чем пропан и пропилен, взятые в отдельности. Это также, по-видимому, связано с преимущественной способностью каждого газа растворять различные группы углеводородов. [c.61]

    Дрью и другие [2] исследовали применение хроматографии газов и масспектрометрии к анализу смеси углеводородов, которые содержат также пропилен и пропадиен. Было показано полное разделение пропилена и пропадиепа при помощи хроматографии газов, однако эта методика не была иснользована для определения примесей. Преимущества настоящей методики перед методом Дрью заключаются в быстроте проведения анализа, простоте устройства и возможности обслуживания неквалифицированным персоналом. На рис. 1 показан спектр масс пропа-диена, пропилена и их смеси, а также на-ло кения спектра масс пропадиена и пропилена в наиболее важной области масс. Чтобы определить состав этой смеси при иомощи масспектрометрии, концентрация пропа-диона должна быть не ниже 1%. Необходим сорбент, на котором пропадиен проявляется до пропилена в данной работе описаны такая набивка и ее применение. [c.199]

    Аналогичный метод описан в американском патенте [69]. Пропилен и смесь пропилена с пропаном окисляли при 340 °С (затем температура повышалась до 450—510 °С) получали 8—11,5 мол. % окиси пропилена наряду с пропионовым альдегидом, акролеином и гидроксиацетоном. В качестве разбавителя предложено исполь- зовать для окисления водяной пар [70], что дает при 215—260 19,7% смеси окиси пропилена и пропиленгликоля. Радиационное облучение повышает выход спиртов, альдегидов и окиси пропилена при окислении пропилена воздухом [71]. Окись пропилена наряду с другими продуктами получается также и при окислении пропана [72]. На фирме I I (Англия) работает опытная установка по прямому окислению пропилена [73]. [c.82]

    Очень важно применять высокочистый пропилен и, особенно, очень чистый и безводный хлор. Любая органическая примесь хлорируется, что вызывает повышение расходов хлора в результате образования побочных продуктов. Также не следует использовать смеси пропана с првпиленом, так как это приводит к образованию трудно-отделяемых монохлоридов [12]. [c.181]

    Высокотемпературное (450—700 °С) хлорирование низкомолекулярных алифатических углеводородов, главным образом метана, этана, пропана, бутана, изобутана, этилена и пропилена, а также их хлорпроизводиых, проходит уже не как чистая реакция замещения, а большей частью как расщепляющий и строящий крекинг. В случае метана преобладает соединение обломков j с образованием иерхлорэтилена, в случае пропанов и пропиленов — расщепление с образованием четыреххлористого углерода и иерхлорэтилена, в случае этапов и этиленов в зависимости от условий реакции могут получаться различные продукты [183—186]. [c.201]

    Промышленное окисление пропана и бутанов проводится в США на заводе Бишеп (В1зсЬор). Проводится здесь также и промышленное окисление этилена в окись этилена. Катализатором является серебро на носителе температура реакции 200— 300° окись этилена из отходящего газа сорбируется водой. Этилен обычно берется сильно разведенный инертными газами или воздухом нередко к нему добавляются дихлорэтан или тетраэтилсвинец, как вещества, подавляющие детонацию. Имеется патент [20] на интересный метод окисления пропилена в акролеин. Пропилен при 50—60° пропускается через кислый раствор сульфата окиси ртути, около 20% пропилена при этом реагирует, образуя с хорошим выходом акролеин, выделяющийся при подогреве до 100" [c.465]

    Данные по составу продуктов крекинга пропана [96,164) показывают, что единственным тормозящим продуктом крекинга является пропилен [55] и для а можно принять приблизительно значение 0,25 (550—600°). Примем, что основной реакцией торможения является взаимодействие Н-атомов с молекулами пропилена, в результате которой активные радикалы —Н заменяются менее активными аллил-радика-лами. Стерический фактор для этой реакции равен 4-.10 [96] и энергия активации реакции торможения 4 равна 2,7 ккал1моль [68]. Кроме того, допустим, что обрыв цепей на стенках происходит также путем захвата атомов Н. Для захвата требуется энергия активации 5, равная 6,5 ккал [197]. Опыты проводились в кварцевом реакторе с диаметром 7 см. Условия опытов (р = 10 мм рт. ст., 863° К) были [c.117]

    Ароматические углеводороды С9, полученные при диспропор-ционировании на алюмосиликатном катализаторе, отличаются по составу от других продуктов более высоким содержанием псевдокумола и мезитилена. В ароматических углеводородах С 9, выделенных из продуктов риформинга, наблюдается повышенная концентрация зтилтолуолов, а в выделенных из бензина пиролиза — к-пропил-бензола п индана. Разделение смесей ароматических углеводородов С 9 на индивидуальные изомеры до настоящего времени в промышленных масштабах не освоено. Из смесей ароматических углеводородов С 9, получающихся в различных процессах нефтепереработки, выделяют псевдокумол и в небольших количествах мезитилен. Получение зтилтолуолов и гемимеллитола ограничивается потребностью в реактивах применения в химической промышленности они пока не находят. Изопропилбензол (кумол) также не выделяют пз смесей ароматических углеводородов С9, а вырабатывают алкилированием бензола пропиленом. [c.210]

    Изрпропилсерная кислота. Изопропилсерная кислота имеет значение как промежуточный продукт при изготовлении изопропилового спирта и диизопропилового эфира из пропилена. Этот олефин реагирует с серной кислотой значительно легче, чем этилен [176, 178], и может абсорбироваться более слабой кислотой. Чтобы получить высокий выход изопропилсерной кислоты, необходимо употреблять менее концентрированную кислоту, так как при концентрированной кислоте преобладаю Г побочные реакции [233]. Абсорбция улучшается в присутствии инертного растворителя для пропилена при условии обеспечения тесного контакта раствора с кислотой [234]. Введение инертного растворителя уменьшает полимеризацию, происходящую при непосредственном растворении пропилена в серной кислоте. Наиболее удовлетворительные результаты получаются при использовании 87%-ной кислоты. Можно также избежать полимеризации, если вести абсорбцию 65—80%-ной кислотой при температуре 10—30° и давлении выше 3,5 ат [235]. В одном из патентов [236] рекомендуется проводить реакцию в жидкой фазе и при низкой температуре, поддерживая последнюю испарением части пропилена. В другом патенте [237] предлагается растворять пропилен в концентрированной серной кислоте при температуре —15°, обеспечивая соприкосновение смеси газов с кислотой в течение некоторого времени. Серная кислота, разбавленная примерно равным объемом ледяной уксусной кислоты, растворяет пропи- [c.45]

    Ди-н-пропилсульфат бурно реагирует со спиртовым раствором едкого кали, образуя этил-к-пропиловый эфир [460]. С фенолятом натрия с выходом 66% дает фенил-н-пропиловый эфир [321, 462]. Нагревание ди-м-пропилсульфата при 170° ведет к его разложению и выделению пропилена, а также некоторого количества сернистого ангидрида и других продуктов. Пропилен при разложении получается с выходом 38%. С перекисями щелочных металлов [461] ди-м-пропилсульфат реагирует с образованием неустойчивой гидроперекиси пропила, выделенной в виде бариевой соли с ацетилени-дом натрия дает к-пропилацетилеп [321]. [c.81]

    Оптимальная длительность контакта реагирующих газов ири температуре около 500° составляет 0,35—0,45 сек. Реакция хлорирования сопровождается выделением тепла — 26,7 ккал1г-молъ.Та.кк.АК при высокой температуре пропан может также хлорироваться, то пропилен должен быть по возможности свободным от пропана, чтобы избежать непроизводительных затрат на его хлорирование. Экономически приемлема концентрация пропилена не ниже 95%-ной. [c.280]


Смотреть страницы где упоминается термин Пропен также Пропилен : [c.9]    [c.166]    [c.226]    [c.9]    [c.120]    [c.77]    [c.48]    [c.238]    [c.7]    [c.30]    [c.225]    [c.406]    [c.406]    [c.366]    [c.104]    [c.692]    [c.130]    [c.766]   
Справочник Химия изд.2 (2000) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Пропей

Пропен

Пропилен Пропен Пропил

Пропилен пропей



© 2025 chem21.info Реклама на сайте