Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса адсорбционное

    Гиббса адсорбционное уравнение (58, 158) определяет адсорбцию Гиббса по изменению межфазного поверхностного натяжения при изменении концентрации (химического потенциала) вещества в объеме. [c.309]

    Количественная зависимость между величиной адсорбции и вызываемым ею изменением поверхностного натяжения была установлена термодинамическим путем Гиббсом , адсорбционное уравнение которого в строгой форме для системы, состоящей из г компонентов в изотермических условиях, имеет вид [c.270]


    Уравнение (11.21) называется обычно адсорбционной формулой Гиббса или изотермой адсорбции Гиббса. Если учесть, что [c.243]

    Это уравнение называется адсорбционным уравнением адсорбционной формулой) Гиббса. [c.469]

    Применение адсорбционой формулы Гиббса. Поверхностноактивные и инактивные вещества [c.469]

    Применение адсорбционной формулы Гиббса [c.473]

    Область применимости уравнения (13.2) ограничена такими значениями толщины смачивающих пленок, когда их еще можно считать частью утончившейся жидкой фазы. При плохом смачивании (0о 9О°) на твердой поверхности образуется двухмерная адсорбционная фаза толщина, пленок не превышает монослоя. Здесь применимо другое выражение, вытекающее из уравнения Гиббса, связывающего величину адсорбции молекул (Г) с изменением межфазного натяжения (osi/) в зависимости от давления пара адсорбата р [45]  [c.218]

    Фундаментальное адсорбционное уравнение Гиббса. Гиббсовская адсорбция [c.35]

    Уравнение (11.41) называют фундаментальным адсорбционным уравнением Гиббса. Поверхностный избыток адсорбата был отнесен Гиббсом к единице поверхности в предположении, что поверхностный слой не имеет объема. Чтобы получить выражение для гиббсовской адсорбции Г,-, обозначим Л общ — общее число молей вещества I в системе, с — равновесная объемная концентрация вещества г, V — объем фазы, 5 — межфазная поверхность. Тогда величина гиббсовской адсорбции выразится следующим образом  [c.36]

    Примеры применения адсорбционного уравнения Гиббса [c.36]

    Из этого уравнения следует, что диф( )еренциальное изменение энергии Гиббса при адсорбции равно изменению химического потенциала адсорбата ири переходе I моль его из стандартного состояния (жидкость, насыщенный иар) на поверхиость адсорбента. Величина, равная дифференциальному изменению энергии Гиббса ири адсорбции, взятая с обратным знаком, называется дифференциальной работой адсорбции или адсорбционным потенциалом  [c.42]

    В такой записи закон Генри можно сопоставить с адсорбционным уравнением Гиббса (11.51)  [c.156]

    Напишите фундаментальное адсорбционное уравнение Гиббса и дайте определение избыточной адсорбции. [c.31]

    Поверхностно-активные вещества отличаются высокой адсорбционной способностью, и для них А Г. Это позволяет применительно к ПАВ совместно решить уравнения Гиббса (1.21) и Генри (П. 1). Совместное решение дает линейную изотерму поверхностного натяжения при малых концентрациях ПАВ в растворе  [c.39]

    Совместное решение адсорбционного уравнения Гиббса (1.21) с уравнением Ленгмюра (П.2) для ПАВ дает уравнение Шишковского, связывающее изменение поверхностного натяжения раствора с концентрацией растворенного ПАВ в объеме  [c.39]


    Уравнения Гиббса, Генри, Ленгмюра и Шишковского по экспериментальным данным о поверхностном натяжении растворов позволяют рассчитать следующие величины и характеристики адсорбцию ПАВ на межфазной границе раствор — воздух и раствор — твердый адсорбент толщину адсорбционного слоя линейные размеры молекул ПАВ предельную адсорбцию поверхностного мономолекулярного слоя удельную поверхность твердого адсорбента, катализатора, а также исследовать свойства поверхностных пленок. [c.39]

    Наиболее полное экспериментальное исследование структуры ДЭС основано на уравнениях Липпмана, которое можно получить из термодинамической теории Гиббса. Адсорбционное уравнение Гиббса для поверхностного слоя, содержащего ионы, получается введением в уравнение (1.9) дополнительного члена, учитывающего работу электрических сил. В этом случае оно имеет следующий внд1 [c.62]

    I) Адсорбция на поверхности жидкости не растворяющегося в ней газа. Рассмотрим на поверхности воды (компонент 1) адсорбцию пара какого-либо чистого не растворимого в воде вещества, например насыщенного углеводорода (компонент 2). В этом случае адсорбционное уравнение Гиббса (XVII, 33) принимает вид  [c.469]

    При адсорбции на твердых адсорбентах измеряется не изотерма а=/(а), но изотерма адсорбции а2 Г2 = ф(р), поэтому для расчета AF величину Да в формуле (XVII, 52а) надо выразить через изотерму адсорбции. Это можно сделать с помощью адсорбционного уравнения Гиббса (XVII, 36), которое, учитывая, что °1 и 1 2—величины постоянные (поскольку они относятся к произвольно выбранному начальному состоянию, в нашем случае к чистому адсорбенту 1 и к чистой жидкости 2), можно записать так  [c.482]

    При физической адсорбции энтропия адсорбции многих газов лежит в пределах 80—]00Дж/(моль К). Если принять предельное значение адсорбции Гоо= = 10 моль-см и толщину адсорбционного слоя 5-10 см, то концентрация газа в адсорбционном слое будет равна 10 /5 10 1 = 0,02 моль/см , или 20 моль/л. Если рассматривать газ как идеальный, то уменьшение энтропии газа в результате адсорбции при нормальном давлении газа над адсорбентом будет равно / 1п20 22,4 и 54 Дж/(моль К). Если учесть двухмерное состояние адсорбированного газа, то изменение энтропии будет еще больше. Следовательно, при взаимодействии субстрата с поверхностью катализатора только за счет физической адсорбции изменение энтропии газа Д 5° будет равно 80 Дж/(моль К)- Это равносильно тому, что энергия Гиббса адсорбированного газа, если рассматривать его как идеальный, возрастает примерно на 24 Дж/(моль К), так как при изотермическом сжатии идеального газа ДО + 4- /"Д 5 =0 (см. 71). Тепловой эффект физической адсорбции изменяется в широких пределах. Термодинамические характеристики процесса адсорбции некоторых веществ на саже приведены ниже. [c.641]

    Адсорбционное уравнение Гиббса (11.41) записано для много-ксмпоИентных систем и является термодинамически строгим соотношением. Однако практическое его использование не всегда удобно. Например, часто возникает необходимость определения зависимости поверхностного натяжения от адсорбции одного конкретного вещества при постоянных химических потенциалах других веществ. Тогда уравнение (И. 41) можно записать относительно частной производной для данного компонента  [c.38]

    В адсорбционном уравнении Гиббса (11.51) влияние природы веществ на адсорбцию отражает производная dald . Эта производная определяет и знак гиббсовской адсорбции. Таким образом. [c.39]

    Рассмотрим процесс адсорбции газов на твердой поверхности с использоваипем фундаментального адсорбционного уравнения Гиббса. При этом примем, что твердый адсорбент в конденсате пара не растворяется. При.таком условии энергия Гиббса системы [c.41]

    Адсорбцию можио рассматривать как взаимодействие молекул адсорбата с активными центрами поверхности адсорбента. Такое рассмотрение этого явления оказалось достаточно общим и удобным, особенно для адсорбции на твердых адсорбентах, когда возникают трудности в экспериментальном определении межфазного натяжения. Кроме того, такая интерпретация адсорбции открывает возможность нсслелвдвания природы адсорбционного взаимодействия. Если отсутствует химическое взаимодействие адсорбата с адсорбентом, то адсорбция, как правило, является результатом самопроизвольного уменьшения поверхностной энергии системы, выражающегося в компенсировании поля поверхностных сил. При наличии специфического сродства адсорбата к адсорбенту, адсорбция возможна вследствие самопроизвольного уменьшения энергии Гиббса всей системы, что может привести даже к увеличению поверхностной энергии. Это возможно в том случае, если изменение химической составляющей энергии Гиббса системы больше изменения поверхностной энергии. При химической адсорбции между адсорбентом и адсорбатом образуется химическая связь, и их индивидуальность исчезает. [c.108]


    Зависимость а от с для ПАВ Б. А. Шишковский получил опытным путем. Ленгмюр, связав уравнение Гиббса со своим уравнением, определил физический смысл констант эмпирического уравнения Шии1ковского, Одна из них равна произведению ЛооУ , другая (К) — имеет смысл константы адсорбционного равновесия в уравнении Ленгмюра (или константы обмена). Допущения при выводе уравнения Шиишовского показывают, что это уравнение в отличие от уравнений Гиббса и Ленгмюра справедливо только для ПАВ. [c.157]

    Адсорбционно-сольватный фактор состоит в уменьшении межфазного иатяжения при взаимодействии частиц дисперсной фазы со средой в соответствии с уравнением Дюпре для работы адгезии и адсорбционным уравнением Гиббса. [c.275]

    Величины адсорбции компонентов раствора Г, и поверхностное натяженне связаны между собой фундаментальным адсорбционным уравнением Гиббса  [c.10]

    Такие дифильные молекулы, способные взаимодействовать одновременно с полярными и неполярными средами, самопроизвольно накапливаются па границах раздела фаз, понижая энергию Гиббса поверхности и образуя адсорбционный слой определенной структуры. В адсорбционных слоях молекулы ПАВ ориентируются полярными группами в сторону полярной среды (воды), а гидрофобной неполярной частью — в сторону менее полярной фазы (воздуха, углеводородной жидкостн). По мере заполнения поверхности раздела вода — воздух молекулами ПАВ поверхностное натяжение на этой границе резко снижается. В разреженных адсорбционных слоях молекулы ПАВ располагаются вдоль поверхности. Такое расположение ПАВ приводит к наибольшему экранированию молекул воды и обеспечивает минимальное поверхностное натяжение раствора. [c.41]

    Образование мицелл в растворах коллоидных ПАВ, как и адсорбция молекул ПАВ в поверхностном слое, протекает самопроизвольно. Прн коицентрации ПАВ ниже ККМ энергия Гиббса системы уменьшается за счет адсорбции ПАВ на границе раствор — воздух. При этом углеводородный радикал молекулы ПАВ выталкивается из воды в газовую фазу. Так происходит вплоть до достижения предельной емкости адсорбционного слоя. При дальнейшем увеличении концентрации ПАВ в растворе снижение энергии Гиббса системы может д0стигат[1ся только за счет стру ктурных изменений в объеме раствора, т. е. путем образования мицелл в растворе. [c.139]


Смотреть страницы где упоминается термин Гиббса адсорбционное: [c.467]    [c.638]    [c.268]    [c.110]    [c.38]    [c.42]    [c.48]    [c.112]    [c.147]   
Теоретическая электрохимия (1959) -- [ c.357 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.356 ]

Курс физической химии Том 1 Издание 2 (1969) -- [ c.443 ]

Курс физической химии Том 1 Издание 2 (копия) (1970) -- [ c.443 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционное уравнение Гиббса

Гиббс

Гиббса формула адсорбционная

Гиббса, адсорбционное уравнени

Гиббса, адсорбционное уравнени проверка

Гиббсит

Глава 5. Методы, основанные на применении изотермы адсорбции Адсорбционная формула Гиббса

Классические термодинамические соотношения для поверхностного слоя. Адсорбционная формула Гиббса. Поверхностно-активные и поверхностно-инактивные вещества

Применение адсорбционной формулы Гиббса

Применение адсорбционной формулы Гиббса. Поверхностно-активные и инактивные вещества

Применение адсорбционной формулы Гиббса. Поверхностноактивные и инактивные вещества

Примеры применения адсорбционного уравнения Гиббса

Фундаментальное адсорбционное уравнение Гиббса. Гиббсовская адсорбция

Фундаментальные уравнения для поверхностного слоя. Адсорбционная формула Гиббса



© 2025 chem21.info Реклама на сайте