Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия сплавов золота

    Пикеринг и Вагнер [2] высказали предположение, что избирательная коррозия сплава золото—медь, содержащего, напри- [c.292]

    Золото — мягкий металл — легко полируется до высокого блеска и имеет высокий коэффициент отражения. Для повышения твердости, износостойкости и получения разнообразных декоративных оттенков осаждают сплавы золота с никелем, кобальтом, серебром, кадмием, медью, цинком и оловом. По характеру защиты покрытия золотом относятся к катодным, так как золото является благородным металлом и имеет высокий положительный потенциал (-1-1,5 В). Для защиты от коррозии основного металла золотые покрытия должны быть практически беспористыми. [c.324]


    Золочение применяется в основном для декоративных целей в ювелирном и часовом производстве и для защиты особо ценного лабораторного оборудования от атмосферной коррозии. Золочение возможно осуществить следующими основными способами огневым, электролитическим и контактным. Огневой способ более старый. В настоящее время он применяется лишь в редких случаях. Суть этого метода состоит в том, что изделия из меди и ее сплавов покрываются амальгамой золота (сплав золота со ртутью), после чего ртуть при нагревании улетучивается, а золото остается в виде плотного осадка..  [c.293]

    Сплавы золота с медью или серебром сохраняют коррозионную стойкость золота, пока его содержание в сплаве превышает некоторое критическое значение, которое Тамман [1] назвал границей устойчивости. Ниже границы устойчивости сплав корродирует, например в сильных кислотах при этом нераство-ренным остается чистое золото в виде пористого металла или порошка. Такое поведение сплавов благородных металлов известно под названием избирательной коррозии и, очевидно, по характеру сходно с обесцинкованием сплавов медь—цинк (см. разд. 19.2.1). [c.292]

    При повышенных температурах границы устойчивости не сдвигаются. Иногда при длительном контакте с агрессивной средой коррозия может наблюдаться даже если содержание золота превышает границу устойчивости. Например, сплавы золото—серебро, содержащие более 50 ат. % золота, подвергаются заметной коррозии при выдержке в азотной кислоте при 100 С в течение недели и более [3]. [c.293]

    Из золота производят тонкие пленки для линз и отражателей в инфракрасной аппаратуре. Сплав золота с платиной и другими металлами идет на изготовление химически стойкой аппаратуры. Золотом покрывают ответственные радиодетали — это придает им стойкость к коррозии, устраняет переходные сопротивления в местах контактов. [c.419]

    В качестве коррозионно-стойких металлических покрытий используются даже такие дорогостоящие и экзотические, как покрытия сплавами платина-иридий, золото-платина, а также золотом, платиной, родием. Однако и такие покрытия не всегда проявляют достаточную коррозионную стойкость при высоких температурах и давлениях. Отмечаются, в частности, коррозия платиновых покрытий в 0,1 М растворе хлористо-водородной кислоты при 150 С и коррозия платины и сплава золото-платина в воде при 315 °С и в паре [c.151]

    На химически стойких сталях число коррозионных язв возрастает при сдвиге электродного потенциала в сторону положительных значений. При этом в язвах на стальной поверхности ионов хлора содержится больше, чем в электролите. К этому виду следует отнести и коррозию туннельного типа. Так, например, в растворах хлоридов некоторые сплавы золота образуют туннели диаметром 150 А. Это приводит к тому, что на поверхности покрытий образуются участки в виде губки, пронизанной ветвящимися туннелями с находящимися в них частицами золота размером до 60 А. [c.13]


    Покрытие термодинамически активного металла сплошным слоем более термодинамически стабильного металла (например, покрытие меди или медного сплава золотом, покрытие стали никелем), а также легирование никеля достаточно большим процентом более стабильного компонента (напри.мер, медью), или хромистой стали никелем — примеры борьбы с коррозией понижением степени термодинамической нестабильности системы. [c.8]

    У сплавов, в отличие от чистого серебра, наблюдается склонность к коррозии вдоль границ зерен твердого раствора (например, у сплавов серебра с марганцем в 50% серной кислоте) вызываемое этой коррозией снижение прочности может доходить до 34%. Серебряные сплавы, подобно некоторым сплавам золота, проявляют склонность к коррозионному растрескиванию. [c.466]

    За границей устойчивости коррозия сильнее всего проявляется у твердых растворов золота с медью, слабее — у твердых растворов золота с серебром и золота с никелем. Обратная последовательность наблюдается при коррозии гомогенизированных сплавов золота с серебром и золота с никелем на воздухе, содержащем сероводород. Поведение твердых растворов палладия с серебром под действием серы и сернистых соединений, а также растворов хлорида натрия, содержащих перекись водорода, описано в работах [10 и 16]. [c.490]

    Коррозионному растрескиванию способствуют искажения ре щетки, подобные имеющимся в твердых растворах (так называе мый эффект твердого раствора ), напряжения, а также агрессивная среда, воздействующая только на неблагородные компоненты. Когда реагент воздействует также и на благородные компоненты (например, азотная кислота на богатые серебром твердые растворы серебра с золотом), трещины носят межкристаллитный характер. Холодная обработка усиливает чувствительность к коррозии под напряжением, но при деформациях эта чувствительность ослабевает [18] и процесс затормаживается. Она вновь воЗ никает при отпуске сплава золота с серебром (содержащего 33 вес.% золота и подвергнутого холодной прокатке с 90% обжатием), как только начинают умень- шаться твердость и прочность. [c.491]

    Предотвращение контактной коррозии в зубоврачебной прак-. тике очень важно продукты коррозии различных металлов, даже если последние далеки друг от друга по потенциалам (золото, се- ребро, амальгамы, латунь, хромистые стали и алюминий), но на- ходятся. совместно в полости рта, могут повлиять на здоровье. Различные металлы не должны соприкасаться в полости рта. Серебро и медные сплавы должны быть безупречно и основательно позолочены. Следует избегать совместной пайки различных металлов, например сплавов золота и сплавов серебра. Контактная коррозия в полости рта начинается лишь при непосредственном соприкосновении металлов слюна вследствие незначительной электропроводности не вызывает достаточного тока между раздельно лежащими металлами [20]. [c.578]

    Скачкообразное повышение химической стойкости сплава при некоторой критической концентрации в нем благородного металла наблюдается и для других сплавов при иных соотношениях компонентов, однако д сплаве атомов благородного металла (отнои благородного металла к общему числу атомо по Тамману, кратно восьми, т. е. доля атомо талла равна п/8, где п — целое число. В рас коррозии сплава медь—золото п = 4. [c.35]

    Различные медные сплавы золотого и бронзового оттенков употребляются для декоративных целей некоторые из них сильно катодны по отношению к железу и, если применить одно покрытие, они в некоторых случаях усиливают коррозию в слабых местах, где железо не защищено, как это было найдено в лабораторных опытах в Кембридже. Это, однако, нельзя приписать всем пигментам класса медных сплавов. [c.741]

    Покрытия из благородных металлов используются не только для отделки, по и для улучшения эксплуатационных характеристик изделий. Эти покрытия, как правило, имеют высокую стойкость против коррозии в агрессивных средах, сопротивление механическому и электроэрозионному износу, высокую отражательную способность и низкое удельное сопротивление [07]. В радиоэлектронике серебрение и золочение токонесущих деталей применяется для улучшения поверхностной электропроводности и максимального снижения переходного сопротивления в местах контактов. В производстве транзисторов, имеющих хрупкую и тонкую обкладку из кремния, для нринаивания контактов используется сплав золота с добавкой 0,5% сурьмы. Германиевая пластинка без всякого флюса припаивается к коваровому диску, покрытому сплавом Аи—Sb или Аи—In (0,5—1,0% In). В области низкочастотных коммутирующих устройств нашли применение золото-никелевые сплавы, содержащие 0,5—2% никеля. В производстве печатных схем также находят применение золото-серебряные сплавы, содержащие 1—3% серебра. В электронной технике особое значение имеет получение покрытий из золота с добавкой кобальта, которые отличаются большим сроком службы в условиях высокотемпературных режимов. Электролитически осажденные пленки таких редких металлов, как германий, таллий, галлий, индий, необходимы в полупроводниковой технике 167]. [c.378]


    Благодаря мелкокристаллическому строению сплавы обладают более высокой твердостью и износостойкостью, чем чистые металлы. П. Ж. Вячеславовым и Е. Г. Кругловой исследована зависимость микротвердости электролитических сплавов Аи—Си от их состава эта зависимость представлена в виде графика на фиг. 14. Из фигуры видно, что сплавы, содержащие 15— 20% меди, имеют твердость в 2,0—2,5 раза более высокую, чем чистое золото. Сравнительные испытания на коррозию сплавов различного состава показали, что в атмосфере сероводорода устойчивыми оказались сплавы, содержащие золото от 75 —до 100%. [c.63]

    В зависимости от содержания в осадке меди покрытие окрашено в розовый (менее 20 % Си) либо красноватый цвет различных оттенков (выше 20% Си), введение олова придает серебристо-белый, а серебра — зеленоватый оттенок. Значительное увеличение содержания в сплаве меди приводит к понижению его стойкости против коррозии, что связано с наличием в осадке частиц элементарной меди. Сплавы, содержащие до 10 % Ag, применяют для слаботочных контактов, поскольку их электри-. ческие характеристики лишь немного отличаются от значений для чистого золота. Однако таким путем нельзя достигнуть экономии драгоценных металлов, к числу которых относится и серебро. Во многих случаях для указанной цели можно использовать сплавы золота с никелем, кобальтом или сурьмой при малом содержании этих легирующих компонентов, что также позволит снизить толщину покрытий без ухудшения их эксплуатационных свойств. [c.112]

    Природа металла. Некоторые металлы вообще не подвержены коррозии (платина, золото и др.), многие другие легко пассивируются (хром, никель, вольфрам, молибден, титан и др.). Эти металлы, добавленные в сплавы сталей передают последним свойство пассивации. На этом принципе основано получение. тегированных сталей. [c.160]

    Сплавы золото — медь характеризуются исключительно высокой стойкостью к коррозии и очень низким давлением собственных паров. Сплавы золото — никель также имеют низкое давление паров, но при этом обладают несколько большей прочностью при высоких температурах. Оба типа сплавов используют в качестве припоев в вакуумных системах. [c.223]

    У бинарных сплавов золота с медью, серебром, никелем и у многокомпонентных сплавов при коррозии под действием соединений серы не удается установить каких-либо четко выраженных границ устойчивости наблюдается лищь крутой подъем скорости реакции. Действие раствора хлорида натрия, содержащего перекись водорода, аналогично действию серы. Характер реакции с серой или ее соединениями или раствором хлорида натрия, в которую вступает твердый раствор золота, при условии отсутствия ликвации не зависит от состояния сплава. [c.490]

Рис. 6. Потенциостатические кривые в расплавленных карбонатах при 600 / — платины 2 —палладия 3 —иридия 4 — золота 5 — сплава золота+20 вес. %, палладия 6 — платины в присутствии воздуха над расплавом. Ток коррозии I в ма см . Рис. 6. <a href="/info/520474">Потенциостатические кривые</a> в расплавленных карбонатах при 600 / — платины 2 —палладия 3 —иридия 4 — золота 5 — <a href="/info/135294">сплава золота</a>+20 вес. %, палладия 6 — платины в <a href="/info/836980">присутствии воздуха</a> над расплавом. Ток коррозии I в ма см .
    Например, прн электрохимическом осаждении сплава золото - медь образуется смесь кристаллов меди и твердого раствора медн в золоте, это приводит к тому, что такой сплав сильнее подвергается коррозии, чем металлургический сплав, н покрытия нз такого сплава довольно быстро тускнеют иа воздухе. [c.19]

    Одним из методов получения химически стойких сплавов, как известно, является легирование неустойчивого или малоустойчивого металла атомами более устойчивого металла, например легирование меди золотом или железа никелем и т. п. Рассмотрим процесс коррозии двойного сплава, являющегося гомогенным твердым раствором, в котором один из компонентов вполне стоек в данной агрессивной среде, а другой, наоборот, растворяется в ней. [c.125]

    Механизм обесцинкования не получил еще удовлетворительного объяснения. Имеются две точки зрения. Первая предполагает, что первоначально протекает коррозия всего сплава, а затем медь осаждается на поверхности из раствора с образованием пористого внешнего слоя. Согласно второй, цинк, диффундируя к поверхности сплава, преимущественно растворяется прИ -а,том поверхностный слой обогащается медью. Каждую из этих гипотез можно успешно применить для объяснения явлений, наблюдающихся в определенных случаях обесцинкования. Однако накопленные факты свидетельствуют, что второй механизм применим намного чаще. Пикеринг и Вагнер [17, 18] предположили, что объемная диффузия цинка происходит вследствие образования поверхностных вакансий, в частности двойных. Они образуются в результате анодного растворения, а затем диффундируют при комнатной температуре в глубь сплава (коэффициент диффузии для дивакансий в меди при 25°С О = 1,3-10" см с) [17], заполняясь преимущественно атомами цинка и создавая градиент концентраций цинка. Данные рентгеновских исследований обесцинкованных слоев Б-латуни (сплав 2п—Си с 86 ат. % 2п) и -у-латуни (сплав 2п—Си с 65 ат. % 2п) показали, что в обедненном сплаве происходит взаимная диффузия цинка и меди. При этом образуются новые фазы с большим содержанием меди (например, а-латунь), и изменение состава в этих фазах всегда идет в сторону увеличения содержания меди. Как отмечалось ранее, аналогичные закономерности наблюдаются в системе сплавов золото— медь, коррозия которых идет преимущественно за счет растворения меди. Растворения золота из этих сплавов не обнаруживают. В результате коррозии на поверхности возникает остаточный пористый слой сплава или чистого золота. Скопления двойников, часто наблюдаемые в полностью или частично обесцинкованных слоях латуни, также свидетельствуют в пользу механизма, связанного с объемной диффузией [19]. Это предположение встречает ряд возражений [20], однако данные рентгеноструктурного анализа обедненных цинком слоев невозможно удовлетворительно объяснить, исходя из концепции повторного осаждения меди. Хотя предложен ряд объяснений ингибирующего действия мышьяка, сурьмы или фосфора на обесцинкование а-латуни (но не Р-латуни), механизм этого явления нельзя считать полностью установленным. [c.334]

    Основными путями борьбы с коррозией при трении является применение различных смазок, изготовление деталей из металлов разной твердости. При этом легкозаменяемые узлы следует делать из более мягких металлов, чем труднозаменяемые. Хорошие результаты дают азотирование, бориро-вание сталей или замена чистых металлов их сплавами (например, замена золота сплавом золото — серебро — медь при покрытии контактных пар и др.). [c.12]

    Покрытия сплавом золото — медь, содержащие > 50% Си, при испытании в 3%-ном растворе Na I имеют следы коррозии в виде цветов побежалости, а при испытании в атмосфере, содержащей 7 мг/л сероводорода, появляются темные пятна (сульфид меди). [c.203]

    При добавках в растворы кислоты ионов золота оказалось, что в Н2504 коррозия сплава ЭИ461 не тормозится (образец целиком растворяется), в фосфорной — коррозия сплава замедляется при [c.208]

    Кислоты, ингибированные добавками ионов золота, практически не замедляли коррозию сплава и в большинстве случаев ускоряли коррозию сталей. Максимальный эффект торможения коррозии стали 1Х18Н9Т достигался в фосфорной кислоте от добавки к ней [c.213]

    Подробно механизм обес-цинкования удовлетворительно еще не описан. Предполагается, что или преимущественно растворяется цинк, оставляя пористую медь, или же растворяется сплав, а затем обратно осаждается медь. Имеются доказательства правильности обоих механизмов в разных случаях. Некоторые исследователи считают, что атомы цинка не могут диффундировать из внутренних областей к поверхности и что, обес- следовательно, избирательная X1 коррозия возможна только в начальной стадии. С другой стороны, доказательством избирательного растворения, независимого от толщины сечения металла, являются остаточные двойниковые полосы, видимые в совершенно обесцпнкованной латуни [8]. Маловероятно, чтобы ионы меди осаждались обратно с точно такой же ориентировкой, как в сплаве, образуя в то же время пористый осадок. Аналогично этому сплавы золота с серебром разделяются в концентрированной азотной кислоте по всей толщине сплава, а не только на поверхности. Пористый остаток золота, вероятно, является следствием избирательной диффузии атомов серебра в решетке сплава, в которой имеется недостаток атомов серебра. То же может происходить в сплавах Си—2п, в которых атомы 2п диффундируют преимущественно. Такие элементы, как Аз, 5Ь или Р, могут мешать диффузии из-за блокирования или адсорбции в каналах, которые пронизывают сплав, однако механизм из влияния не установлен. [c.270]

    Серебрение или плакировка серебром применяются для защиты стального оборудования от коррозии. Однако даже небольшое нарушение сплошности покрытия может вызвать интенсивную коррозию основного металла. В растворах кислоты любой концентрации при высоких температурах стойки медноникелевые сплавы с содержанием никеля 20— 30%, стали Х23Н28МЗДЗТ, Х20Н28М4Д, платина, золото. [c.828]

    В паре с алюминием, медью, никелем, оловом, зубной амальгамой и серебром в 1 /о растворе Na l скорость коррозии сплава не изменяется, во всяком случае за относительно короткие сроки испытаний. Никаких весовых потерь не наблюдается и при контакте с золотом или нержавеющей сталью 18-8 в ]% растворе Na l в течение 4 суток [3]. [c.300]

    Границы растворимости. При использовании сплавов на основе благородных металлов как кислотостойких материалов естественно желание добавить в них как можно больше дешевых компонентов без потери при этом коррозионной стойкости. Обычно эта стойкость уменьшается (иногда резко), если содержание неблагородного металла превышает какую-то определенную величину. Такое поведение сплавов благородных металлов давно известно из опыта работы той отрасли промышленности, где процессы коррозии по существу являются желательными, а именно при разделении металлов при а4х )инаже. В случае отделения золота от серебра сплав из этих двух металлов обычно подвергают воздействию такой коррозионной среды, которая растворяет серебро и оставляет золото в виде пористого скелета или шлама. Оно может быть осуществлено простым погружением сплава в кислоту окислитель (вроде азотной кислоты или более дешевой горячей концентрированной серной кислоты) или анодной поляризацией сплава от внешней э. д. с. Электролитическое разделение сплава золота и серебра иногда выполняется в две стадии сначала в результате анодной обработки в растворе азотнокислого серебра получается анодная губка из золота, все еще содержащего некоторое количество серебра затем эта губка расплавляется и используется в качестве анода в кислом растворе хлористого золота. [c.322]

    Так, Тамманн и Брауне, изучая отожженные сплавы золота с серебром, нашли, что они почти не растворяются в серной кислоте при 150°, если в сплаве больше 50 атомных процентов золота если же в сплаве содержится только 49% золота, то коррозия становится ощутимой. Тамманн установил, что подобные границы растворимости существуют и для других систем спл авов, таких как золото-медь и золото-палладий, но что граница зависит от коррозионной среды и условий. Иногда для разделения необходимо, чтобы % атомов в сплаве относились к менее благородному компоненту. Он также нашел, что резкая граница обычно получается только в случае отожженных сплавов, когда распределение атомов обоих типов в решетке упорядоченное, т. е. когда получается сверхструктура . В неотожженном же сплаве, хотя места расположения атомов в целом и составляют правильную решетку, распределение атомов совершенно спорадично, поэтому может случиться, что даже в сплавах, содержащих большое количество растворяющегося в коррозионной среде элемента, встретятся группы атомов этого элемента, окруженные атомами более благородного элемента, вследствие чего они не будут растворяться в коррозионной среде. Если же распределение атомов упорядочено с помощью отжига, то при определенном составе сплава мы внезапно переходим от состояния, в котором доступным для коррозионной среды являются только те растворимые в этой среде атомы, которые расположены вблизи поверхности, к состоянию, в котором имеются непрерывные дорожки из растворимых атомов от поверхности вглубь при таком строении становится возможным полное разделение двух металлов, составляющих сплав. [c.322]

    Полагают, что при воздействии хлорного железа на СизАи медь удаляется из решетки, оставляя на сплаве золотую губку последняя служит катодом, поскольку ее потенциал на 0,2 в положительнее потенциала сплава таким образом процесс коррозии продвигается в глубь сплава. В сплаве, соответствующем соединению Си Аи, это не пpo xoдит, так как в нем слишком много золота, чтобы образовались непрерывныё дорожки из меди. Поэтому медь удаляется только из слоев, близких к поверхности образца как было указано на стр. 322, это объясняется границами растворимости [57]. [c.630]

    С повышением температуры довольно (Н1Л1.И0 возрастает скорость коррозии никеля н сплавов па его основе, а также сталей, в состав которых ои входит. Особенно опасно то, что окисление никеля протекает преимущественно по границам зерен. В результате реакции образуется легкоплавкая. эвтектика Ni—NiS, плавящаяся при температуре 625 С, поэтому разрупи ние металла часто происходит по границам зерен. При температурах >6ПГ С предпочтение следует отла-пать хромистым сталям. Лобавка алюминия в количестве 3—4% положительно влияет на жаростойкость сталей в среде 50 . Золото при высоких температурлх не подвергается воздействию газов, содержащих SO2. [c.844]

    При избирательной коррозии, как и при обесцинковании, происходит преимущественное растворение одного или нескольких компонентов сплава. При этом образуется пористый скелет, сохраняющий первоначальную форму изделия. Избирательная коррозия характерна для сплавов благородных металлов, таких как Аи—Си или Ли—Ag, и используется на практике при рафинировании золота. Например, сплав Аи—Ай, содержащий более 65 % золота, устойчив в концентрированной азотной кислоте, как и само золото. Однако сплав, содержащий около 25 % Аи и 75 % Ag, реагирует с концентрированной НЫОз с образованием АёНОз и чистого золота в виде пористого остатка или порошка. Медные сплавы, содержащие алюминий, могут повергаться коррозии, аналогичной обесцинкованию, о преимущественным растворением алюминия. [c.28]


Смотреть страницы где упоминается термин Коррозия сплавов золота: [c.210]    [c.39]    [c.39]    [c.163]    [c.8]    [c.822]   
Коррозия и защита от коррозии (1966) -- [ c.491 ]




ПОИСК





Смотрите так же термины и статьи:

сплавы золота сплавы



© 2025 chem21.info Реклама на сайте