Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Литий спектральное

Рис. 3.10. Тонкая структура спектральных линий атомов натрия и лития Рис. 3.10. <a href="/info/827627">Тонкая структура спектральных линий</a> атомов натрия и лития

    Метод основан на фотометрировании дублета спектральных линий натрия 589,6 и 589,0 нм (3 5i/2—з/2 а = 2,1 эВ), излучаемых его атомами в пламени светильный газ — воздух. Факторы специфичности при определении натрия в присутствии калия, лития и кальция составляют соответственно л-10 , л-10 и /г-10 Предел обнаружения натрия Ы0 %- Метод ограничи- [c.41]

    Прибор питается от сети переменного тока 220 В, суммарный дрейф электрического и фотометрического нуля — не более четырех делений шкалы. Установление показаний (время измерения аналитического сигнала)—не более 30 с. Для выделения резонансных спектральных линий натрия, калия и лития и максимума полосы СаОН используют интерференционные светофильтры с максимумами пропускания 589 5 нм (натрий), 768 5 нм (калий), 670 5 нм (литий) и 622 5 нм (кальций). [c.27]

    Спектральный эмиссионный анализ можно проводить как непосредственно на загрязненном масле (путем исследования жидкой пробы), так и путем исследования золы после сжигания этой пробы. При анализе золы смесь зольного остатка загрязнений, прокаленного в муфельной печи, графита и фтористого лития, помещают между электродами электрической дуги, сжигают и определяют по полученным спектрам качественный и количественный состав загрязнений. Этот метод отличается высокой чувствительностью, но длителен и трудоемок. [c.35]

    Пары лития имеют ярко-красный цвет, а его летучие соединения окрашивают пламя горелки в карминово-красный цвет, что используется для качественного обнаружения лития. В спектре лития главная серия линий (42 линии) находится в интервале 6708,2—2302,2 А наиболее четкие линии спектра, используемые в спектральном анализе 6707,84 6103,64 4603,00 и 3232,61 А [36]. Чувствительность определения лития спектральным методом составляет 1,25-10 мг [37]. [c.14]

    Карбонат лития — спектрально чистый по барию, кальцию, цинку, фосфору, кобальту. [c.521]

    Калийу рубидийу цезий и литий. Спектральные исследования [c.22]

    Количественное определение лития спектральным путем можно производить по линиям 6130,6 и 6707,8 А, находящимся в видимой области, и по линии 3232,61, расположенной в ультрафиолетовой области спектра. Первые две линии требуют для работы с ними спектрографа со стеклянной оптикой, последняя — кварцевого спектрографа. [c.69]

    Об отсутствии значительных систематических погрешностей при определении лития можно судить по приведенным в табл. 2 определениям концентраций лития спектральным методом и методом пламенной фотометрии. [c.78]


    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4 51/2—4 Р°1/2.3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий ( в) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1—2 мкг//мл. Присутствие [c.40]

    Метод основан на последовательном фотометрировании дублетов спектральных линий калия 4 51/2—4 P°i/2, 3/2 769,9, 766,5 нм ( а = 1,62 эВ) и лития 2 Si/2—22Р 1/2,3/2 670,8 нм ( в = 1,85 эВ) , излучаемых атомами калия и лития а пламени светильный газ — воздух. Факторы специфичности интерференционных светофильтров при определении калия в присутствии лития, натрия и кальция составляют 10 , а лития в присутствии калия и натрия— 10 —10 что обусловливает хорошую избирательность анализа смеси калия и лития методом фотометрии пламени. Предел обнаружения калия и лития — 5-10 %. [c.45]

    В колбу, снабженную механической мешалкой, капельной воронкой и холодильником, помещают 2,4 г (0,06 моль) борогидрида натрия и 125 мл диглима. В полученный раствор прибавляют 5,4 г (0,06 моль) хорошо растертого сухого бромида лития. Содержимое колбы перемешивают 0,5 ч и затем к нему прибавляют в течение 30 мин 17,6 г (0,1 моль) этилового эфира коричной кислоты. Реакционную смесь для завершения реакции нагревают на водяной бане в течение 3 ч, затем охлаждают и выливают ее в смесь 100 г толченого льда и 10 мл хлороводородной кислоты. Продукт реакции выделяют, как описано выше. Получают 11 г (82 %) коричного спирта, индивидуального по данным ТСХ и ГЖХ. Спектральные характеристики коричного спирта даны на рис. 2.8. [c.161]

    Наблюдаемые в пламенах спектры атомов относительно просты, так как при таких температурах наблюдаются спектральные линии, обусловленные переходами только с уровней с низкими энергиями возбуждения (1,5—2,5 эВ). Поэтому в методе эмиссионной фотометрии пламени применяют очень простые приборы — пламенные фотометры, в которых монохроматором являются интерференционные светофильтры, а детектором излучения — фотоэлементы. Как правило, пламенные фотометры позволяют определять несколько элементов последовательно (натрий, калий, кальций, литий). Сконструированы также одноканальные многоэлементные фотометры с прямым отсчетом, позволяющие определять до И элементов, в том числе бор (по молекулярной полосе ВО2) и цезий (по резонансному дуплету). Более совершенны пламенные фотометры, имеющие компенсационную схему, которая устраняет спектральные помехи, связанные с инструментальной ошибкой (анализаторы типа ПАЖ). [c.14]

    Обнаружение лития. Надежным и чувствительным способом обнаружения лития является спектральный, метод. [c.78]

    Окна спектральных кювет в И К-спектрометрах изготовляют из хлорида натрия, фторида кальция, фторида лития или бромида калия. Это исключает использование водных растворов. Содержание влаги в образцах даже в относительно небольших количествах недопустимо, так как она разрушает полированную поверхность окошек кюветы. [c.280]

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4251/2—4 Р°1/2,3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий Ев) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1-—2 мкг//мл. Присутствие 2—4 мкг/мл натрия в растворе, содержащем менее 2 мкг/мл калия, увеличивает интенсивность излучения калия. При более высоких концентрациях калия в растворе влиянием легко ионизующихся примесей можно пренебречь. Кислоты и анионы уменьшают интенсивность спектральных линий калия, причем наибольшее влияние оказывают фосфат-ионы. Предел обнаружения калия составляет 0,05 мкг/мл. [c.40]


    На рис. 22 в качестве примера приведена схема энергетических уровней наружного электрона в атоме лития. Линии, соединяющие различные уровни, показывают переходы электронов на схеме указаны длины волн (в А) соответствующих спектральных линий. [c.51]

    В видимой и ультрафиолетовой областях широко применяют как призменные, так и дифракционные спектральные аппараты. В инфракрасной области преимущественно используют призменные приборы. При использовании в этой области дифракционных решеток нельзя допускать перекрытия спектров разных порядков. Для этого можно поставить предварительную призму или светофильтр, которые выделяют только нужный участок спектра, а окончательное разложение излучения в спектр делает решетка. В области вакуумного ультрафиолета применяют главным образом приборы с вогнутыми дифракционными решетками, хотя в области до 1100 — КОО А небольшое применение находят также призменные приборы с оптикой из флюорита или фтористого лития. [c.99]

    Конструкция спектрографов. Оптические детали монтируют на массивном литом основании, так что весь спектральный аппарат является единым жестко связанным прибором. Только в редких случаях, когда камера и коллиматор смонтированы в виде отдельных блоков, его конструктивно можно разделить на несколько частей. [c.127]

    К энергично перемешиваемой суспензии амида лития, приготовленной из 1,4 г (0,2 моль) металлического лития и 200 мл жидкого аммиака, прибавляют 5,6 г (0,1 моль) пропаргилового спирта, перегнанного в небольшом вакууме. Далее в течение 1,5 ч прибавляют по каплям 13,7 г (0,1 моль) бутилбромида, после чего аммиаку дают испариться, снабдив открытое горло колбы газоотводной трубкой, наполненной гранулами натронной извести (обычно колбу оставляют на ночь). Трубка должна располагаться на уровне дна колбы или ниже его, с тем чтобы после удаления аммиака в колбе осталась защищающая атмосфера этого газа. Удалить аммиак можно и быстрее - выпариванием на водяной бане (сначала вода должна иметь комнатную температуру, затем 30-40 °С). К твердому остатку осторожно при перемешивании прибавляют 50 мл воды. После того как масса растворится, органические вещества извлекают экстракцией эфиром (5 раз). Объединенные экстракты сушат сульфатом магния, эфир удаляют. После перегонки остатка из колбы с дефлегматором образуется 8,4 г (75 %) гептин-2-ола-1, т. кип. 83 °С при 12 мм рт. ст., 1,4550. Продукт индивидуален по данным ГЖХ. Спектральные характеристики даны на рис. 3.4. [c.209]

    Спектры Л. Спектр испускания (часто наз. просто спектром Л.) представляет собой зависимость интенсивности свечения от частоты (длины волны) испускаемого света. В лит. обычно приводят наблюдаемые спектры испускания, зависящие от спектральной чувствительности и градуировки прибора. Для получения истинного (квантового) спектра испускания выражают интенсивность Л. в числе фотонов, приходящихся на единичный интервал частот. [c.615]

    Экспериментальные исследования поглощения окиси углерода в инфракрасной области были выполнены на инфракрасном спектрометре Перкина — Элмера (модель 12С) с призмой из фтористого лития. Спектральное разрешение, полученное с установленной па спектрометре шириной щели, составляло примерно 4 см для осповной полосы и 30 см для первого обертона. Был использован обычный коммерческий газ без дальнейшей очистки. Различные исиользованпые газы, фирмы их поставляющие, а также номинальный состав газов указаны в табл. 6.1. [c.84]

    Кални, рубидий, цезий в литий. Спектральные исследования [c.336]

    Глава XIII. Калий, рубидий, цезий и литий. Спектральные исследования..............................475 [c.15]

    Эмиссионный метод. Определение изотопов лития спектральным методом подробно рассмотрено в монографиях [149, 154], Изменение массы ядра приводит к изотопическому смещению спектральных линий, которое может быть зарегистрировано как эмиссио тчым, так и атомно-абсорбционным методом. При опре- [c.119]

    Р1сследование производали на однолучевом инфракрасном спектрометре ИКС-12 с призмой из фтористого лития. Спектральная ширина щели составляла около 11 см в области 3500 и около 6 — в области 2600 см-  [c.38]

    Оптическая схе1у4а прибора. Оптическая схема анализатора ПАЖ-1 позволяет сконцентрировать световой поток, излучаемый пламенем, на светочувствительную поверхность фотоэлемента, скомпенсировать спектральные помехи и выделить спектральную линию определяемого элемента (рис. 14). Для определения каждого из четырех элементов (натрия, калия, лития и кальция) в приборе ПАЖ-1 применяется один вакуумный фотоэлемент Ф-9. [c.27]

    РЬАРН0-4 в основном предназначен для определения щелочных элементов — лития, натрия, калия, рубидия по их резонансным спектральным линиям, а также кальция по молекулярной полосе с максимумом испускания 622 нм. Возможно определение и других элемен- [c.31]

    Для увеличения сроков хранения овощей и фруктов их обрабатывают раствором бром>1да. калия, обладающим бактерицидными свойствами. В приборах для спектрального анализа применяют линзы, выточенные из КВг, которые пропускают инфракрасное излучение. КВг вводят в состав проявителя для устранения вуали на фотоизображении. Галогениды серебра, и чаще всего АеВг, входят как главный компонент в состав светочувствительного слоя фотоматериалов — пленок, пластинок, бумаги ( унибром , бромпортрет ). Бромид натрия добавляют в дубильные растворы, что улучшает механические свойства кожи. Бромид лития используют для обезвоживания минеральных масел, устранения коррозии в холодильных установках. Броморганнческими соединениями пропитывают древесину, предохраняя ее от гниения, окрашивают ткани ( броминдиго ) в яркие цвета от синего до красного, наполняют огнетушители (бромхлорметан), предназначенные для тушения загоревшейся электропроводки. Броматы натрия и калия добавляют в тесто для получения пышного белого хлеба. [c.229]

    Роберт Вильгельм Бунзен (1811—1899) — немецкий химик и физик, профессор химии в Марбурге (1838) и Гейдельберге (1852—1889). Выполнил важные исследования в области фотохимии. В 1841 г. изобрел угольно-цинковый гальванический элемент, с помощью которого получил металлический магпий (1852), литий, кальций, стронций и барий (1854—1855). Разработал точные методы газового анализа, описанные им в руководстве Газометрические методы (1857). Совместно с Г. Р. Кирхгофом разработал спектральный анализ, с помощью которого открыл два новых элемента — цезий (1860) и рубидий (1861). С 1862 г. член-корреспондент Петербургской Академии наук. [c.159]

    В колбу, снабженную механической мешалкой, капельной воронкой и холодильником (см. рис. 2.1) помещают 2,4 г (0,06 моль) борогидрида натрия и 125 мл диглима. После того как весь гидрид растворится, прибавляют 5,4 г (0,06 моль) хорошо растертого бромида лития. Содержимое колбы перемешивают 0,5 ч и затем к нему прибавляют в течение 30 мин 18,5 г (0,1 моль) 4-хлороэтил-бензоата. Реакционную смесь нагревают на кипящей водяной бане в течение 3 ч, затем охлаждают и выливают ее в смесь 100 г толченого льда и 10 мл хлороводородной кислоты. Твердый 4-хлоробензило-вый спирт отфильтровывают, промывают водой от свободной кислоты, сушат. Получают 14,2 г (97 %) 4-хлоробеизилового спирта, т. пл. 73-74 °С. После перекристаллизации из воды получают 13,9 г (85 %) продукта, т. пл. 74-75 °С, Хроматография элюент -хлороформ, Rf 0,3. Спектральные характеристики приведены на рис. 2.10. [c.164]

    Несмотря на то что с помощью исследованных к настоящему врс-менР1 лазерных систем можно получить сотни спектральных литой, очень немногие из них обладают достаточной интенсивностью для применения в фотохимии и аналогичных делен. В этом разделе указаны лазерные спстемы, нашедшие наибольшее применение. Почти невозможно перечислить все тппы выпускаемых лазеров и лазерного оборудования с этой целью мы отсылаем читателя к прекрасному руководству (12]. Приведенные ниже данные (табл. 187) заимствованы из нескольких источников [13—15], и их выбор несколько произволен. В по- [c.370]


Библиография для Литий спектральное: [c.28]   
Смотреть страницы где упоминается термин Литий спектральное: [c.181]    [c.186]    [c.133]    [c.100]    [c.281]    [c.368]    [c.193]    [c.279]    [c.541]    [c.672]    [c.27]    [c.177]   
Физико-химичемкие методы анализа (1964) -- [ c.345 ]

Физико-химические методы анализа Издание 2 (1971) -- [ c.357 ]

Физико-химические методы анализа (1964) -- [ c.345 ]

Физико-химические методы анализа (1971) -- [ c.357 ]




ПОИСК







© 2025 chem21.info Реклама на сайте