Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обезвоживание минеральных

    Еще более существенны отклонения от изложенной простейшей модели в отношении массообмена от частиц (т. е. непосредственно влагоудаления). Рассмотрим типичный для обезвоживания минеральных солей случай интенсивного выпаривания слабо связанной, поверхностной влаги. Часто при этом кинетические ограничения могут иметь значения, воздействуя на производительность и габариты аппарата двояким образом в случае необходимости более глубокого высушивания — удаления сильно связанной влаги (так называемый второй период сушки [15]) —резко возрастает требуемое время пребывания частиц в слое и ввиду макрокинетических свойств последнего как аппарата идеального смешения возможна неравномерность в степени высушивания материала с другой стороны, при обезвоживании гигроскопичных растворов кинетические ограничения связаны с возможностью насыщения отходящих газов водяными парами [10, с. 56—59 43 95]. [c.257]


    Следует отметить широко применяемое непосредственное использование солнечной энергии в химической промышленности для испарения морских и озерных рассолов с целью кристаллизации калиевых, натриевых, магниевых и других солей, для нагревания и перегонки воды, а в жарких странах — также для сушки растительного сырья, обезвоживания минеральных солей и некоторых органических продуктов. [c.119]

    По окончании кислотной обработки подкисленную воду в промывочном чане полностью заменяют 1%-ным раствором минерального контакта (135—140 капель по сталагмометру). Этим раствором шарики обрабатывают не менее 35—45 мин, а затем массу выгружают в емкость для обработки их вытеснителем — дизельным топливом. В процессе обработки вытеснителем при испарении воды из пор гидрогеля минеральный контакт понижает поверхностное натяжение и тем самым ослабляет сжатие стенок капиллярных пор, обеспечивая наименьшее растрескивание целых шариков в термических процессах обезвоживания. Основное внимание следует уделять наблюдению за концентрацией газойлевого контакта в растворе и предупреждению значительного разбавления раствора при выгрузке шариков из промывных чанов. Разбавление раствора снижает его эффективность, а применение высоких концентраций может вызвать повышенное растрескивание шариков силикагеля в процессе прокаливания. [c.123]

    Обезвоживание продувкой пара. В соответствии с рассматриваемым способом осадок на фильтре продувают слегка перегретым водяным паром, который можно получить редуцированием давления насыщенного пара до атмосферного [309, 310]. Способ возможно применять при наличии обычного фильтровального оборудования, в частности для обезвоживания угля и минеральных продуктов он отличается относительной простотой и экономичностью, но для своего осуществления требует генератора пара. Применение пара интенсифицирует процесс обезвоживания, однако при этом не удается полное удаление влаги из пор осадка, как это в принципе достижимо при продувке осадка нагретым воздухом. Обезвоживание паром применимо на барабанных, дисковых, ленточных фильтрах, работающих под вакуумом и снабженных герметичными кожухами, которые предотвращают поступление пара в помещение. [c.282]

    Песколовка —это проточный аппарат прямоугольной формы, в котором жидкость движется прямолинейно. Выделяющийся песок сгребается скребками к приемному бункеру и забирается оттуда насосами на площадки для обезвоживания. Длина песколовки колеблется в пределах 10—15 м, ширина—от 0,5 до 2,0 м, глубина проточной части — от 0,4 до 1,0 м. Скорость движения сточных вод через песколовку составляет 0,1—0,3 м/с, время пребывания 30—120 с. Песколовка предназначена для задержания минеральных частиц крупностью 0,15 мм и более. [c.315]


    Внешнее электрическое поле широко используется в процессах обезвоживания и обессоливания нефтей для интенсификации коалесценции отдельных капель. Рассмотрим на примере поведения пары капель механизм их взаимодействия. Будем считать, что капли не деформируются, что эквивалентно замене их двумя жесткими сферами. За счет растворенных минеральных солей капли можно считать проводниками в поле они поляризуются и начинают взаимодействовать друг с другом (рис. 1.4). Сила их взаимного притяжения пропорциональна диэлектрической проницаемости нефти г , квадрату напряженности электрического поля Е и существенно зависит от расстояния между каплями и их радиусов и Общее выражение для силы взаимного притяжения двух незаряженных частиц, действующей вдоль линии, соединяющей их центры, можно записать в виде [c.19]

    Минеральные вещества, содержащиеся в коксах, мало изменяются до температуры 1000° С. Отмечают главным образом обезвоживание алюмосиликатов, диссоциацию карбоната кальция и начало восстановления окислов и сернистых соединений железа. Но в диапазоне 1000—1500° С металлургический кокс с содержанием 10% золы теряет почти 8% своей массы, главным образом в форме окиси углерода, вследствие восстановления окислов железа, кремния и части извести и глинозема. Соответственно его теплотворная способность увеличивается почти на 400 кал/кг. Не удивительно, что эти все реакции возникают при температуре около 1500° С. Это объясняется образованием жидкой фазы, состоящей из смеси металлов, сернистых соединений и карбидов, где разбавление металлов уменьшает ее химическую активность и, таким образом, смещает равновесие [3]. [c.123]

    Минеральные соли удаляются при обессоливании, которое заключается в том, что нефть для растворения солей несколько раз промывается теплой водой. Образующиеся при промывке эмульсии отделяются от нефти при обезвоживании. [c.57]

    В нефтях всегда содержатся соли нафтеновых и минеральных кислот, которые при сжигании нефти образуют золу. Зольные вещества не перегоняются и остаются в остатках от перегонки — мазуте и гудроне. Удаляют соли из нефти при подготовке ее к переработке (обезвоживанием и обессоливанием), но некоторая часть их все же остается в нефти и в дальнейшем переходит в гудрон. В результате этого гудроны всегда содержат золу количество ее зависит от степени обессоливания нефти перед переработкой. [c.307]

    До поступления на химическое производство минеральное сырье, как правило, подвергается предварительной обработке, после которой его состав и свойства удовлетворяли бы требованиям данного технологического процесса. Такая обработка состоит из совокупности механических, химических и физико-химических операций измельчение, укрупнение, обезвоживание, обогащение или флотация. Флотация основана на различной смачиваемости водой полезных компонентов и пустой породы минерального сырья. Например, флотацией полиметаллических сульфидных руд получают концентраты, отделяя при этом пустую породу. [c.169]

    Нефть, добываемая из земных недр, содержит, как правило, газ, называемый попутным, пластовую иоду, минеральные соли, различные механические примеси. На каждую тонну добытой нефти приходится 50—100 м попутного (нефтяного) газа, 200— 300 кг воды, в которой растворены соли. Перед транспортировкой и подачей нефти на переработку газ должен быть отделен от нефти. Удаление газа из нефти проводится с помощью сепарации и стабилизации. Нефть также подвергается очистке от механических примесей, обезвоживанию и частичному обессоливанию. [c.105]

    Силикагели. Эти адсорбенты представляют собой продукты обезвоживания геля кремневой кислоты, получаемые путем обработки раствора силиката натрия (растворимого стекла) минеральными кислотами или кислыми растворами их солей. Удельная поверхность силикагелей изменяется от 400 до 770 мЧг. Размер гранул колеблется от 0,2 до 7 мм, насыпная плотность составляет 400—800 г л. [c.565]

    Метод обезвоживания, подбирается исходя из разновидности эмульсии. Из нестабилизированных эмульсий воду отделяют путем отстаивания, для ускорения процесса эмульсию подогревают. Отделение воды из стабилизированных эмульсий осуществляют на основе таких сложных методов, как химическая обработка, термообработка, электрическая обработка и сочетание этих методов. Перед проведением обезвоживания и обессоливания проводят лабораторные исследования для определения содержания воды, имеющихся примесей, а также состояния, в котором вода находится в нефти. Процессы обезвоживания и обессоливания аналогичны, так как вода удаляется из нефти вместе с растворенными в ней минеральными солями. Для более полного обессоливания в нефть подают дополнительно пресную воду, растворяющую минеральные соли. [c.39]

    В некоторых случаях возникает необходимость разрушения эмульсии или предупреждения ее образования. Для этой цели применяют различные способы, основными из которых являются действие сильных минеральных кислот и их солей высаливание)-, действие температуры действие искусственного силового поля (седиментация) действие электрического поля (электрофорез) и действие ПАВ — деэмульгаторов. Например, полимер из латекса выделяют высаливанием или вымораживанием для обезвоживания нефти и нефтепродуктов воздействуют электрическим полем для этого, а также отделения сливок от молока используют центрифугирование сливочное масло из сметаны выделяют механическим взбиванием органические вещества при перегонке с водяным паром отделяют от воды высаливанием или действием деэмульгаторов, и т. д. [c.287]


    В некоторых странах для кондиционирования осадков сточных под применяют высокомолекулярные полиэлектролиты. Выбор pea 1ч нта и его доза устанавливаются пробным кондиционированием. Высокомолекулярные соединения дают высокий эффект обезвоживания осадков при дозах, в сотни раз меньших, чем при использовании минеральных коагулянтов. [c.238]

    Фирмой ЛОТОС-ПРИМ (г Москва) разработан способ переработки гальваношламов, позволяющий утилизировать содержащиеся в них ценные компоненты. Способ позволяет полностью извлекать из шламов содержащиеся в нем металлы и получать в качестве побочных продуктов переработки минеральные соединения (серу, гипс и т. п.) и экологически чистые шлаки, пригодные к дальнейшему использованию в промышленности [84, 85]. Процесс утилизации гальваношламов включает в себя следующие этапы обезвоживание сушка непосредственно переработка с одновременной утилизацией побочных продуктов и доочисткой газов плавка металлов или сплавов (рис. 16). [c.64]

    Для увеличения сроков хранения овощей и фруктов их обрабатывают раствором бром>1да. калия, обладающим бактерицидными свойствами. В приборах для спектрального анализа применяют линзы, выточенные из КВг, которые пропускают инфракрасное излучение. КВг вводят в состав проявителя для устранения вуали на фотоизображении. Галогениды серебра, и чаще всего АеВг, входят как главный компонент в состав светочувствительного слоя фотоматериалов — пленок, пластинок, бумаги ( унибром , бромпортрет ). Бромид натрия добавляют в дубильные растворы, что улучшает механические свойства кожи. Бромид лития используют для обезвоживания минеральных масел, устранения коррозии в холодильных установках. Броморганнческими соединениями пропитывают древесину, предохраняя ее от гниения, окрашивают ткани ( броминдиго ) в яркие цвета от синего до красного, наполняют огнетушители (бромхлорметан), предназначенные для тушения загоревшейся электропроводки. Броматы натрия и калия добавляют в тесто для получения пышного белого хлеба. [c.229]

    Дисперсионная среда торфяных систем представляет собой сложный водный раствор органических и минеральных соединений, концентрация которых зависит от условий торфообразо-вания и соотношения твердой и жидкой фаз. Развитая поверхность конденсированных структур торфа и высокая их насыщенность функциональными группами обусловливает широкий спектр поверхностных явлений в межфазных слоях материала, предопределяющий в итоге специфику процессов связывания и переноса воды в торфе и продуктах его переработки. От состояния связанной воды во многом зависит выбор оптимальных технологических схем обезвоживания, сушки торфяного сырья, получения продуктов с заданными свойствами. [c.63]

    Печи циклонные. Для сжигания сточных вод типа сульфатных щелоков, которые могут гореть самостоятельно, применяется горизонтальная циклонная печь (рнс. 94). Печь имеет цилиндрическую камеру, расположенную под небольшим углом к горизонту, выполненную из шамотного кпрппча класса А, в качестве изоляции применен шамот-легковес. Нз передней торцевой стенке печи установлена горелка 1, предназначенная для разогревания печи перед включением форсунки для распыливания сточных вод. Форсунки 6 расположены по горизонтальной оси печп. Вторичный воздух для горения органической составляюгцей сточных вод подается тангенциально через ряд сопел, равномерно установленных в кладке печи. Минеральные соли, содержащиеся в сточных водах, после обезвоживания стока п окислення органической составляющей расплавляются, II зола стекает к задней торцевой стенке, откуда она удаляется через специальный люк с затвором. [c.250]

    Печи с кипящим слоем. В печах КС производится обезвоживание сточных вод, содержащих минеральные соли, термическое разложение обработанных минеральных кислот, сжигание нефтяного шлама и т. д. Печи КС представляют собой термореакторы, отличающиеся наличием взвешенного потоком газа слоя твердых частиц. [c.256]

    Полученные таким образом цементы обладают очень высокой кнслотостойкостью даже при высоких температурах, особен-Е10 в концентрированных минеральных кислотах. Исключение составляют плавиковая кислота при обычной температуре и фосфорная кислота при высокой температуре. Причину сравнительно малой стойкости этих цементов в слабых минеральных и органических кислотах следует искать в характере протекания реакции между этими кислотами и силикатом натрия. Жидкое стекло под воздействием крепкой кислоты энергично разлагается, и цемент быстро уплотняется в результате обезвоживания [c.458]

    Добываемая нефть содержит значительное количество воды, механических примесей, минеральных солей. Поступающая на переработку нефтяная эмульсия подвергается обезвоживанию и обес-соливанию. Характерными чертами нефтяных эмульсий являются их полидисперсность, наличие суспендированных твердых частиц в коллоидном состоянии, присутствие ПАВ естественного происхождения, формирование при низких температура х структурных единиц. По данным [144] в процессе диспергирования капель воды в нефти образуется до триллиона полидисперсных глобул в 1 л 1%-ной высокодисперсной эмульсии с радиусами 0,1 10 мк, образующаяся нефтяная эмульсия имеет большую поверхность раздела фаз. Высокие значения межфазной энергии обуславливают коалесценцию глобул воды, если этому процессу не препятствует ряд факторов структурно-механический барьер, повышенные значения вязкости дисперсионной среды. Установлено, что повышению структурно-механической прочности межфазных слоев в модельной системе типа вода — мас о — ПАВ способствует добавка частиц гЛины [145]. Агрегативная устойчивость нефтяных эмульсий обеспечивается наличием в них ПАВ — эмульгаторов нефтяного происхождения так, эмульгаторами нефтяных эмульсий ромашкинской и арланской нефтей являются смолисто-асфальтеновые вещества, а эмульсий мангышлакской нефти алканы [144]. Интересные результаты об изменении степени дисперсности нефтяных эмульсий в зависимости от pH среды и группового состава нефтей получены в работе [146]. Механизм разрушения нефтяных эмульсий состоит из нескольких стадий столкновение глобул воды, преодоление структурно-механического барьера между rлoбyJ лами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии, вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно - снижении вязкости дисперсионной среды (до 2—4 ммУс) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц уменьшении степени минерализации остаточной пластовой воды введением промывной воды устранении структурно-механического барьера введением определенных количеств соответствующих ПАВ — деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия [c.42]

    В нефтеперерабатываюшей промышленности электро-обезвоживание нашло довош>но широкое применение при подготовке сырья для каталитических процессов, а также в сочетании с водной промывкой нефтепродукта после его очистки химическими р>еагентами (щелочью, кйслотой и т. д.). Применяемые на НПЗ электродегидраторы имеют разййобразную конструкцию и выбираются в зависимости от свойств нефтяного сырья, содержания в нем воды и минеральных солей (рис, 3.21). [c.107]

    На промыслах трестов "Бугурусланнефть" и "Кинельнефть" был применен комбинированный способ деэмульсации нефти — термохимический, при котором эмульсированную нефть нагревали и обрабатывали химическим реагентом деэмульгатора НЧК (нейтрализованный черный контакт). Характеристика НЧК уд. вес 1,05-1,08 воды по Дину и Старку 84-85 сульфокислот 14-15 минеральных масел до 1,5%. Многочисленные лабораторные опыты с бугурусланскими эмульсиями показали, что во всех случаях увеличение дозировки НЧК сверх потребного для полной деэмульсации нефти не давало отрицательного эффекта и ускоряло процесс деэмульсации. Повышение температуры от 20 до 40 °С не оказало сушественного влияния на процесс деэмульсации, и отстой при 20, 30 и 40 °С был одинаков. НЧК смешивали в коллекторе с эмульсированной нефтью, смесь их поступала в теплообменник, где ее подогревали и направляли дальше в резервуары для отстоя. Отстоявшуюся нефть по магистральным нефтепроводам перекачивали в резервуары товарного парка. Опыт применения термохимического способа деэмульсации с добавкой НЧК на промыслах треста "Бугурусланнефть" полностью себя оправдал. При существующем технологическом режиме процесса обезвоживания нефть сдавали с содержанием воды 1—1,2 %. К числу основных недостатков термохимического способа деэмульсации нефти относили потерю легких фракций, использование которых в общем цикле деэмульсации не предусматривалось. [c.73]

    Минеральные соли, содержащиеся в нефти не только в виде водных растворов, но и в виде кристаллов, в значительной степени усиливают процессы коррозии, снижают срок службы основного оборудования. Отмеченное влияние воды и солей на процессы добычи, транспорта и переработки нефти требует проведения отделения воды и солей от нефти и обеспечения содержания их в регламентируемом количестве. Процессы обессолива-пня и обезвоживания осуществляются на сборных пунктах нефтепромыслов на специальных установках перед подачей нефти в нефтепровод. Процесс обезвоживания усложняется при образовании стойких нефтяных эмульсий, основным показателем которых является их стойкость, характеризующая длительность разделения эмульсии на составные компоненты. [c.110]

    Перед выполнением операций обессоливания и обезвоживания в обязательном порядке проводят лабораторный анализ нефти с целью определения содержания воды и примесей, разновидность примесей, а также состояние, в каком находится вода. Однозременно с обезвоживанием нефти происходит и ее обессоливаиие, так как вода удаляется вместе с растворенными в нефти солями. В отдельных случаях для улучшения процесса обессоливания в нефть подают дополнительно пресную воду, растворяющую минеральные соли. [c.111]

    Алюмосиликаты с жесткой кристаллической структурой (цеолиты, полевые шпаты) почти не изменяют параметров решетки при обмене одних ионов на другие и не способны к набуханию в воде и сжатию при обезвоживании. Для волокнистых и слоистых алюмосиликатов характерна способность к набуханию и изменению параметров решетки в процессе обмена ионов. Эти особенности структуры во многом обусловливают различия в ионообменных свойствах набухающих и ненабухающих природных минеральных ионообменников. [c.40]

    При изготовлении битумно-резиновой мастики на месте производства работ битумоварочный котел необходимо тщательно очистить, затем 75 % его объема заполняют битумом (табл. 46), очищенным от тары и разбитым на куски. При температуре 140—150°С битум доводят до полного расплавления. Для предотвращения вспенивания в котел добавляют низкомолекулярный силоксановый каучук СКТН-1 или пеногаситель ПМС-200 в размере 2 % от массы битума. После полного обезвоживания при температуре 170—180 °С в битум добавляют наполнитель для придания битумным мастикам структурной и механической прочности. Минеральные наполнители повышают прочность, теплостойкость и улучшают пластические свойства. Например, введение 20 % известняка или доломита в битум до 2 раз увеличивает прочность и эластичность мастик. [c.64]

    Сточные воды нефтяных месторождений. Сточной водой на нефтяном месторождении называется смесь пластовой воды, добываемой вместе с нефтью, с пресной водой, добавляемой в н фть в процессе обезвоживания, и ливневыми водами. Содержание пластовых вод в сточных водах составляет 82—84%. Если при разработке месторождения с использованием метода заводнения в пласт нагнетается пресная вода, сточные воды постепенно опресняются. На крупнейщих месторождениях пластовые воды относятся к водам хлоркальциевого типа и характеризуются большой концентрацией растворенных солей. Соответственно этому концентрация солей в сточных водах высока. Основные компоненты минеральных растворимых веществ — ионы Na-, Са +, С1 . [c.220]

    Практическое применение. Электроосмос используют для обезвоживания пористых тел - при осушке стен зданий, сыпучих материалов и т. п., а также для пропитки материалов. Все шире применяют электроосмотич. фильтрование, сочетающее фильтрование под действием приложенного давления и электроосмотич. перенос жидкости в электрич. поле. Использование электрофореза связано с нанесением покрытий на дета сложной конфигурации, для покрытия катодов электроламп, полупроводниковых деталей, нагревателей и т. п. Этот метод применяется также дня фракционирования полимеров, минеральных дисперсий, для извлечения белков, нуклеиновых к-т. Лекарств, электрофорез - метод введения в организм через кожу или слизистые оболочки разл. лек. средств. Эффект возникновения потенциала течения используется для преобразования мех. энергии в электрическую в датчиках давления. [c.430]


Библиография для Обезвоживание минеральных: [c.300]    [c.346]    [c.190]   
Смотреть страницы где упоминается термин Обезвоживание минеральных: [c.82]    [c.256]    [c.28]    [c.310]    [c.138]    [c.440]    [c.3]    [c.57]    [c.241]    [c.6]    [c.312]    [c.312]    [c.380]   
Химическая литература Библиографический справочник (1953) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте