Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Симметрия, влияние на кристаллизацию

    Влияние симметрии в строении молекулы углеводородов на их температуру кристаллизации [22, 23] [c.25]

    П. Кюри в 1894 г. высказал гипотезу о том, что во внешней форме кристалла сохраняются лишь общие элементы симметрии кристалла и питающей среды. Позднее эта гипотеза была распространена Шафрановским [1] на все случаи роста кристаллов, в том числе на рост кристаллов из расплавов, с внесением представлений о влиянии на процесс кристаллизации взаимодействия атомов, образующих кристалл, с атомами окружающей среды. Под влиянием окружающей среды, примесей и условий кристаллизации одним и тем же типам кристаллической структуры могут соответствовать кристаллы с различным габитусом. Таким образом, габитус кристаллов и симметрия внешних форм зависят от совокупности влияния симметрии, структуры и условий кристаллизации. [c.194]


    Симметрия растущего кристалла может быть существенно изменена путем сознательного выбора условий кристаллизации. С одной стороны, процесс кристаллизации можно вести так, чтобы симметрия растущего кристалла определялась главным образом симметрией столба расплава и теплового поля. С другой — возможно такое ведение процесса кристаллизации, при котором сильнее проявляются кристаллографическая природа, анизотропия скорости роста. Ниже приводятся результаты исследований по совместному влиянию формы столба расплава, теплового поля, кристаллографической симметрии затравки на реальную форму и структуру выращиваемых профилированных монокристаллов. [c.77]

    Температура плавления кристаллизующихся углеводородов имеет тенденцию к повышению с увеличением молекулярного веса, усилением поляризуемости и симметричности молекул. Повышение температуры плавления с увеличением молекулярного веса закономерно для углеводородов одного гомологического ряда и однотипной структуры. Температура плавления кристаллизующихся углеводородов с молекулами различной структуры зависит в основном от строения молекул. Углеводороды с несимметричной, разветвленной структурой характеризуются низкой температурой кристаллизации, а в некоторых случаях вообще неспособны кристаллизоваться. Симметричность молекул и простота их строения способствуют образованию кристаллических структур и повышению температуры плавления углеводородов. Ван-Нес и Ван-Вестен [8] считают, что разветвление молекул оказывает решающее влияние на температуру плавления углеводородов, и отмечают общее правило, что наиболее симметричные молекулы имеют наиболее высокую температуру плавления. Это правило указанные авторы объясняют тем, что чем более симметрична молекула, тем больше имеется способов построить из нее кристаллическую решетку, что согласно статистическим положениям приводит к более высокой температуре плавления. Правило молекулярного веса, указывающее, что температура плавления углеводородов возрастает с их молекулярным весом, может быть подавлено правилом симметрии. [c.40]

    Маклаклан считает, что координирование роста шести лучей можно объяснить существованием термических и акустических стоячих волн в кристалле. По мере того как снежинка растет путем наслаивания молекул воды на первоначальный зародыш кристаллизации, она совершает тепловые колебания в температурном интервале 250-273 К. Движущиеся молекулы воды ударяют по зародышу, и некоторые отскакивают от него, а те, которые остаются, способствуют его росту. Разветвление происходит в местах с высокой концентрацией молекул воды. Если изначальный зародыш льда имеет гексагональную форму, показанную на рис, 2-38, <з, и условия благоприятствуют росту дендри-тов, го шесть угловых позиций будут получать больше молекул воды и будут выделять больше скрытой теплоты кристаллизации, чем остальные участки. Развитие дендрита, вытекающее из подобных условий, показано на рис. 2-38,6. Следующая стадия развития снежинки-это образование нового набора дендритных ветвей (или лучей), которые определяются характером колебаний вдоль иглообразных лучей снежинки. Считается, что длинные иглы, показанные на рис. 2-38, й, состоят из совокупности молекул, которые соответствуют структуре льда. Молекулы совершают колебания, и распределение энергии между колебательными модами находится под влиянием граничных условий. Когда одна из игл становится сильно перегруженной в некотором месте, в ней индуцируются продольные колебания, В узловых точках таких колебаний будут выбрасываться дендритные ветви, которые оказываются равноудаленными, как показано на рис. 2-38,г е. Как же стоячие волны в одной из ветвей взаимодействуют с себе подобными в других Такое взаимодействие осуществляется через центральную часть снежинки, в которой сходятся все лучи и через которую проходит ось симметрии. Это место сочленения ретранслирует все частоты колебаний, индуцируя те же самые узлы во всех лучах. Таким образом, Маклаклан утверждает, что дендритное развитие идет идентично во всех ветвях и оно не зависит от какой-либо выбранной ветви, для которой произошло изменение условии. [c.45]


    Значительное влияние на устойчивость быстрорастущих граней оказывает состояние поверхности затравки -перед началом кристаллизации. Если наращивание производится на плоскую поверхность, то зачастую, даже в неблагоприятных физико-хими-ческих условиях, вырождение грани пинакоида начинается после того, как успевает сформироваться 5—10-миллиметровый бездефектный монокристальный слой. И, наоборот, углубления и каналы травления затравки стимулируют образование в этих местах ромбоэдров (или граней близких к ним индексов), которые в зависимости от параметров синтеза либо быстро выклиниваются, оставляя над поверхностью затравки многочисленные клиновидные паразитные пирамиды, либо разрастаются. В последнем случае грань базиса трансформируется в многоглавую поверхность регенерации, скорость роста которой значительно ниже скорости роста грани с. Очевидно, за счет действия входящих углов субиндивиды покрываются поверхностями сложной формы, которые следует относить к трапецоэдрам. В отдельных опытах кристаллы синтезировались в условиях, когда грани г и трапецоэдров росли с одинаковыми скоростями и, вероятно, в силу этого не вытесняли друг друга. Мелкие (<0,5 мм2) грани трапецоэдров появляются также в местах зарастания каналов травления затравки (по три грани над каждым каналом) и образуют столбчатые трехгранные паразитные пирамиды, ориентированные в материале пирамиды <с> взаимно параллельно и параллельно оси симметрии третьего порядка. [c.168]

    Границы между указанными зонами весьма условные, поэтому степень искажения облика кристаллов различна. Факторы р-Г-условий и химического состава среды кристаллизации способны подавлять или интенсифицировать развитие определенных форм, однако во всех случаях прослеживается закономерное влияние симметрии питания, приводящее, как будет показано ниже, к формированию изометричиых, удлиненных или уплощенных кристаллов. [c.391]

    Ньюман и Пауэлл [177] сообщили о спонтанном разделении сольватированного три-о-тимотида. Ньюман [176] объяснил и продемонстрировал имевщееся при этом влияние стерических факторов. Кристаллизация три-о-тимотида из бензола приводит к образованию молекулы- хозяина три-о-тимотида в виде кристаллической структуры, принадлежащей только одной из энантиоморфных пространственных групп, а именно группе, обладающей поворотной осью симметрии. Таким образом достигается разделение двух энантиоморфных форм кристаллов тимотида. Несмо- [c.136]

    Если поток тепла вдоль оси трубки постоянен по ее сечению (одномерен) и если не учитывать такие дополнительные факторы, как кинетические явления на поверхности раздела фаз или влияние поверхностной энергии и примеси, и считать несущественным как каталитическое, так и любое другое влияние стенок трубки, то для исследования кристаллизации переохлажденного расплава в трубке можно воспользоваться решением классической одномерной задачи Стефана, взяв уравнения (9.19) и (9.22). При выполнении сделанных предположений фронт кристаллизации плоский, тепловой поток полностью заключен в переохлажденном расплаве и, согласно уравнению (9.19), скорость кристаллизации dXIdt пропорциональна Следовательно, кристаллизация в трубке Таммана нестационарна, так что скорость роста не может принимать постоянного значения. Как уже отмечалось при обсуждении уравнения (9.23), скорость направленной кристаллизации постоянна только в том случае, когда от расплава с начальной температурой, равной температуре плавления, отбирают тепла больше, чем его поступает при постоянной температуре к поверхности л = 0 для этого температура граничной поверхности должна снижаться с течение. времени экспоненциально. Поскольку в экспериментах с трубкой Таммана это условие не выполняется, постоянство скорости кристаллизации свидетельствует либо о нарушении одномерности теплового потока, либо о заметном влиянии каких-либо из уже перечисленных выше факторов, либо о том и другом одновременно. Поэтому целесообразно попытаться найти количественное решение трехмерной (или двумерной при условии цилиндрической симметрии) задачи Стефана для трубки Таммана, потому что без такого решения вряд ли можно предсказать форму поверхности раздела фаз и скорость кристаллизации. Впрочем, из эксперимента можно определить нижнюю границу значений кинетического коэффициента, основываясь на том, что переохлаждение поверхности раздела фаз бГ АТ. Некоторого успеха в исследовании плоского фронта, перемещающегося с постоянной скоростью, добился Хиллинг [105], рассчитавший к тому же температурные градиенты для трубок со стенками различной толщины. Аналогичные вычисления провели Майкле и др. [108]. Любов [86] проанализировал одномерную задачу с граничными [c.408]

    Механизм образования центров кристаллизации под влиянием соответствующих солей металлов еще не выяснен, однако установлено, что агенты, вызывающие образование зародышей кристаллов, должны обладать необходимыми молекулярными размерами, стереохимической структурой и полярностью это, по-видимому, обеспечивает более благоприятный режим кристаллизации и более совершенную икроструктуру полимера. Некоторые полимеры при достаточно быстром охлаждении могут быть получены в аморфном состоянии, например изотактический полистирол, полиэтилентерефталат и др., однако полиэтилен нельзя получить полностью в аморфном состоянии. Это, по-видимому, связано с высокой симметрией молекул, а также малой величиной периода идентичности (табл. 11). Полипропилен имеет больший период идентичности, и поэтому он может получаться с менее совершенной смектической структурой. [c.45]


    Например, при конденсации этиленгликоля и адипиновой кислоты образуется кристаллический полиэтиленадипат, но соответствующий полиэфир из 1,2-пропиленгликоля с несимметричным расположением боковых метильных групп представляет собой сиропообразную жидкость. Аналогичное явление можно наблюдать при конденсации Ы-замещенного диамина, например Ы,Н -ди-метилгексаметилендиамина, с дикарбоновой кислотой, например с адипиновой. Полимер и в этом случае сиропообразен, но не из-за отсутствия симметрии, а вследствие влияния метильных групп на водородную связь. Этилеигликоль и терефталевая кислота дают также кристаллический полиэтилентерефталат ( терилен ), в то время как при конденсации этого же гликоля с фталевым ангидридом получается лии ь стеклообразный полимер, неспособный к кристаллизации и к образованию волокон. Несмотря на то, что в этом случае молекула полимера линейна в том смысле, что она не содержит разветвлений и не образует поперечных связей, оршо-положение двух эфирных групп в остатке кислоты обусловливает образование полимера, цепи которого настолько свернуты, что ориентация или кристаллизация становятся невозможными. [c.89]

    Полиэтиленфталат и полиэтиленизофталат не кристаллизуются, в то время как полиэтилентерефталат легко кристаллизуется. Хилл и Уолкер [3] также приводят в качестве примеров соответствующие полиэфиры, в которых бензольное кольцо заменено на нафталиновое ядро или дифенильную группу, и отмечают, что влияние недостаточной симметрии (ароматической кислоты) было очень велико полимеры, полученные из двухосновных кислот, обладающих центром симметрии, хорошо кристаллизовались, в то время как полимеры, полученные из кислот, не обладающих центром симметрии, не были способны к кристаллизации. Следует отметить, что, хотя ароматические участки [c.229]


Смотреть страницы где упоминается термин Симметрия, влияние на кристаллизацию: [c.118]    [c.657]    [c.185]    [c.14]    [c.230]   
Физика макромолекул Том 2 (1979) -- [ c.252 ]




ПОИСК







© 2025 chem21.info Реклама на сайте