Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводород температуры кипения и плавления

Рис. 3.6. Энтальпия углеводородов АН (в жидкой фазе), отсчитанная от температуры плавления, при температуре кипения в зависимости от числа атомов углерода п в молекуле Рис. 3.6. <a href="/info/34468">Энтальпия углеводородов</a> АН (в <a href="/info/30223">жидкой фазе</a>), отсчитанная от <a href="/info/6380">температуры плавления</a>, при <a href="/info/6377">температуре кипения</a> в зависимости от <a href="/info/570725">числа атомов</a> углерода п в молекуле

    Формальдегид (метаналь, муравьиный альдегид) НСНО — бесцветный газ с острым раздражающим запахом, с температурой кипения -19,2°С, температурой плавления -118°С и плотностью (в жидком состоянии при -20°С) 0,815 т/м . С воздухом образует взрывчатые смеси с пределами воспламеняемости 5,5 и 34,7% объемн. Формальдегид хорошо растворим в воде, спиртах, ограниченно растворим в бензоле, эфире, хлороформе, не растворим в алифатических углеводородах. Легко полимеризу-ется, особенно при нагревании и в присутствии полярных примесей, образуя твердый полимер линейного строения (параформ) с оксиметиленовыми звеньями  [c.294]

    В процессе экстракции необходимо учитывать следующие факторы влияние температуры на селективность и емкость растворителя зависимость селективности растворителя от концентрации ароматических углеводородов в исходной смеси зависимость селективности растворителя от молекулярного веса углеводородов одного гомологического ряда соотношение количеств растворителя и сырья, а также рециркулята. На работу экстракционной установки влияет также вязкость, поверхностное натяжение, плотность, температуры кипения и плавления, химическая и термическая стабильность растворителя. [c.50]

    Физические свойства. Углеводороды ряда ацетилена, содержащие от 2 до 4 атомов углерода в молекуле, в обычных условиях — газы, от 5 до 15 углеродов — жидкости, от 16 углеродов и выше — твердые вещества. Общие закономерности изменения температур кипения, плавления, удельного веса в пределах гомологического ряда алкинов такие же, как и в ряду предельных углеводородов или олефинов. [c.43]

    Бензол — углеводород (температура кипения 80,4°, точка плавления - -5,4°), многими своими свойствами отличающийся от углеводородов жирного ряда (соединений с открытыми цепями). Судя по его формуле (СеНе), бензол должен быть отнесен к непредельным соединениям, однако свойства его резко отличаются от свойств олефинов и ацетиленов. Так, например, олефины и ацетилены легко присоединяют галоиды и легко окисляются водным раствором марганцовокислого калия, тогда как при взбалтывании бензола с бромной водой или с водным раствором марганцовокислого калия никакого изменения бензола не происходит. При взаимодействии бензола с галоидами, например, при действии свободного хлора или брома в присутствии катализаторов, происходит замещение водородных атомов бензола галоидами. [c.417]


    Большая часть продукта перегоняется при 36—31°. Препарат может содержать небольшое количество изомерного 1-пен-тена. Путем вторичной перегонки, пользуясь при этом колонкой длиною в 25 см, наполненной мелкими стеклянными палочками, можно легко выделить чистый углеводород. Температура кипения 2-пентена равна 36,39 0,047760 мм] температура плавления — 138° 2°, плотность 0,6555, и 1,3839. [c.336]

    Достаточно познакомиться с современной справочной литературой, чтобы убедиться в том, что мы иногда не знаем даже основных свойств веществ, принадлежащих к наиболее изученным классам соединений. Так, например, в справочнике Р. Д. Оболенцева [2], в котором собраны фундаментальные свойства 1323 важнейших углеводородов (температуры кипения и плавления, показатель преломления, плотность, теплота испарения и т. д.), читатель найдет 15 876 мест для заполнения значениями соответствующих свойств. Однако 11 525 мест пустует. При этом, например, для 318 ароматических углеводородов указано всего 1350 значений свойств, т. е. из 12-ти возможных (на каждое вещество) только 4. Некоторые свойства практически не известны так, из 406 цикланов только для 7 найдены критические температуры и давления. Все это отражает объективное положение дел и отнюдь не является характеристикой полноты указанного справочника подобная картина наблюдается и в других сводках. [c.5]

    В масляных фракциях нефти слабо растворяются твердые углеводороды. Они способны выделяться при охлаждении этих фракций в виде кристаллов. Растворимость уменьшается с увеличением молекулярного веса твердых углеводородов, повышением их концентрации и температуры кипения масляных фракций. С повышением температуры растворимость парафинов и церезинов увеличивается и при температуре плавления они смешиваются со всеми нефтяными фракциями во всех соотношениях. [c.90]

    Перфторуглеводороды — подвижные жидкости, по температурам кипения и плавления близкие к углеводородам той же структуры и с тем же числом С-атомов. Удельные веса перфторуглеводородов и величины их вязкости несколько выше удельных весов и вязкости соответствующих углеводородов, температуры кипения — немного ниже. [c.287]

    Для характеристики кристаллизующихся углеводородов, входящих в те или иные группы однотипных структур, имеет значение не только сама величина температуры плавления, но и соотношение или связь ее с температурой кипения или молекулярным весом, иными словами, температура плавления углеводородов данной группы, отвечающая тому или иному молекулярному весу или температуре кипения. Это соотношение или форма связи между молекулярным весом углеводорода и его температурой плавления, зависящей от структуры молекул, определяет температуру плавления и химическую природу кристаллизующихся и, в частности, твердых углеводородов, которые могут входить в ту или иную фракцию нефти, в то или иное сырье для депарафинизации. Однако аналитическое выражение этих соотношений [c.40]

    Температура плавления некоторых углеводородов ниже температуры кипения жидкого кислорода (пропана — 84° К, пропилена—88° К и т.д.). При превышении пределов растворимости такие вещества находятся в жидком кислороде в виде капель, которые имеют тенденцию [c.101]

    Плотность ароматических углеводородов, имеющих орто- и смежное положение заместителей, выше, чем у других изомеров с теми же алкильными группами. Введение заместителей в ароматическое ядро снижает температуру плавления и повышав ет температуру кипения (инкремент температуры кипения составляет 20°С на один атом углерода). Наличие нескольких заместителей повышает температуру кипения больше, чем изомерный углерод с одним заместителем (ксилолы и этилбензол, триметилбензолы и н-пропил- и изо-пропилбензолы). Для симметричных изомеров характерна более высокая температура плавления (л-ксилол плавится при 13,3°С, м- и о-ксилолы соответственно при —47,9°С и —25,2°С). Подобная же закономерность наблюдается и для трехзамещенных углеводородов. При различии в строении алкильного заместителя наблюдаются закономерности, характерные для парафиновых углеводородов — изоструктура алкильного заместителя приводит к снижению температуры кипения. Основные показатели некоторых ароматических углеводородов приведены в табл. 1.1. [c.9]

    Выделяющаяся из топлива твердая фаза представляет собой высокоплавкие углеводороды, преимущественно парафинового ряда, а также ароматические и нафтеновые углеводороды с длинными боковыми цепями и некоторые бициклические углеводороды — прежде всего ароматические. Температура плавления этих углеводородов зависит от их строения и молекулярного веса. Как правило, с увеличением молекулярного веса, а следовательно, и температуры кипения температура плавления повышается. Однако температура плавления углеводородов одного и того же молекулярного веса в зависимости от строения колеблется в очень широких пределах в ряде случаев температура плавления высокомолекулярных углеводородов ниже, чем пизкомолекулярных. [c.137]


    В табл. 3. 7 приведены температуры плавления углеводородов различных классов, температура кипения которых соответствует пределам выкипания дизельных топлив. [c.137]

    При гидрировании ароматических углеводородов имеет место пропорциональное количеству введенного водорода понижение удельного веса, температуры кипения и температуры плавления. Это можно проследить на гидрировании фенантрена (табл. 47). [c.180]

    Наиболее низкую температуру кипения имеет метан. По мере увеличения молекулярного веса углеводородов температура кипения их все более и более возрастает (рис. 2). Следующие за бутанами члены гомологического ряда предельных углеводородов от gH j до С15Н32 представляют собой при обычной температуре жидкости, а углеводороды с 16 и большим числом углеродных атомов в молекуле являются уже твердыми веществами. Подобные же закономерности наблюдаются и в других гомологических рядах с увеличением молекулярного веса возрастают температуры кипения и плавления членов гомологического ряда. Как правило, вещества, молекулы которых имеют разветвленную цепь углеродных атомов, кипят при более низкой [c.23]

    В состав нефтей входят ароматические углеводороды с числом циклов от одного до четырех. Распределение их по фракциям различно. Как правило, в тяжелых нефтях содержание их резко возрастает с повышением температуры кипения фракций. В нефтях средней плотности и богатых нафтеновыми углеводородами ароматические углеводороды распределяются по всем фракциям почти равномерно. В легких нефтях, богатых бензиновыми фракциями, содержание ароматических углеводородов резко снижается с повышением температуры кипения фракций. Ароматические углеводороды бензиновых фракций (выкипающих от 30 до 200° С) состоят из гомологов бензола. Керосиновые фракции (200—300° С) наряду с гомологами бензола содержат производные нафталина, но в меньших количествах. Ароматические углеводороды тяжелых газойда-вых фракций (400 —500° С) состоят преимущественно из гомологов нафталина и антрацена. В деасфальтированном остатке от перегон1(4 и ромашкинской нефти Н. И. Черножуков и Л. П. Казакова наряду с твердыми парафиновыми и нафтеновыми углеводородами обнаружили твердые ароматические углеводороды с температурой плавления 32° С. [c.26]

    Наименование углеводородов Температура кипения °С Температура плавления °С Плотность при 20° Коэффиц. преломлен, при ng  [c.72]

    Поскольку масляное сырье представляет собой многокомпонентную смесь кристаллизующихся углеводородов, растворенных в кизкозастывающихся компонентах, при депарафинизации в основном будет иметь место совместная, то есть многокомпонентная, кристаллизация с образованием различных более сложных смешанных форм кристаллической структуры. При совместной кристаллизации из углеводородных сред в первую очередь выделяются кристаллы наиболее высокоплавких углеводородов, на кристалли — меской решетке которых последовательно кристаллизуются углеводороды с более низкими температурами плавления. При этом (рорма кристаллов остается ромбической, а их размер зависит от молекулярной массы и химической природы кристаллизующихся углеводородов. Так, с повышением молекулярной массы и температуры кипения н-алканов кристаллическая структура их становится все более мелкой. Обусловливается это тем, что с повышением молекулярной массы уменьшается подвижность молекул парафина. Это затрудняет их диффузию к ранее возникшим центрам кристаллизации и вызывает образование новых дополнительных кристал — Аических зародышей малых размеров. [c.254]

    Замещение в ядре пли гидрирование снижает температуры плавления и нипения, а с увеличением числа колец в молекуле эти температуры возрастают. С увеличением числа атомов углерода у заместителя повышается температура кипения, но снижается температура плавления. Температура кипения бензола и его производных при уменьшении давления равномерно снижается, поэтому при ректификации четкость разделения гомологав бензола увеличивается. Это справедливо и для других ароматических углеводородов. [c.10]

    Основную массу и-алканов, содержапщхся в дистиллятах нефтяных масел, составляют углеводороды от с температурой плавления 28° и температурой кипения 318°, примерно до Сщ с температурой плавления 74,6° и температурой кипения 498°, а в отдельных случаях и до С4ц с температурой плавления 81° и температурой кипения 536°, В парафиновые дистилляты, кипящие обычно в пределах от 300—325 до 450—475°, могут входить к-алканы от Сх, и Сх с температурами плавления 21 и 28° до С30 и С32 с температурами плавления 64,7 и 69,6° и температурами кипения 456 и 476°. [c.41]

    Изопрен (2-метил-бутадиен-1,3) С5Н8 представляет бесцветную легколетучую жидкость с характерным запахом, с температурой кипения 34,1°С, температурой плавления -145,9°С и плотностью 0,681 т/м . Изопрен не растворим в воде, хорошо растворим в углеводородах, этаноле, диэтиловом эфире. Образует азеотропные смеси с метанолом, этанолом, ацетоном и многими другими органическими растворителями. В парах изопрен образует с воздухом взрывчатые смеси с пределами воспламеняемости 1,67 и 11,5% об. Температура вспышки изопрена составляет -48°С, температура самовоспламенения 400°С. [c.321]

    Особенно высокими температурами плавления характеризуются углеводороды с короткой цепью, в молекулах которых все атомы водорода основной цепи замещены одинаковыми радикалами. Примером такого изомера может служить 2,2,3,3-тетраметилбу-тан или гексаметилэтан СяНхд, температура плавления которого равна 101,6°, температура кипения 106°. Однако изоалканы с температурой плавления более высокой, чем температура плавления к-алканов равного молекулярного веса, встречаются редко, и сведений об их присутствии в нефтях не имеется. Изоалканы, встречающиеся в нефтях, имеют температуры плавления более низкие, чем к-аяканы, и значительная их часть даже не относится к категории твердых углеводородов. [c.44]

    С повышением температуры кипения, т. е. с возрастанием молекулярного веса и увеличением числа атомов углерода в молекуле, температуры плавления изоалканов различной структуры, как и других углеводородов, повышаются. Вследствие этого с возрастанием температуры кипения фракции увеличивается возможность существования и количество изоалканов с повышенными температурами плавления, относящихся к твердым кристаллическим углеводородам. [c.44]

    При глубокой же депарафинизации (например, при депарафинизации избирательными растворителями при низких температурах) в гач перейдет также и значительное количество твердых компонентов с температурами плавления пониженными для данного интервала температур кипения или для данного молекулярного веса. Эти компоненты будут состоять в значительной своей доле из циклических углеводородов и изоалканов. Полученные из таких гачей технические парафины будут также содержать повышенное количество циклических углеводородов и углеводородов изостроения, если при обезмасливании таких гачей не будут приняты специальные меры для предотвращения перехода этих компонентов в целевой парафин. [c.58]

    Методы 1—4 действительно позволяют производить разделение углеводородов и классов углеводородов по их свойствам температуре киПения, температуре плавления, адсорбции или растворимости. Методы же 5—7 не могут быть использованы для разделения углеводородов. Они позволяют определять физические свойства, упоз1Янутые выше в методе 5, или же спектры углеводородов. [c.13]

    Так как изомерные парафины с разветвленными цепями имеют более низкие температуры плавления дпя определенной области температур кипения и молекулярных весов и большую растворимость в растворителях, соотношение парафиновых углеводородов с разветвленными цепями и нормальных углеводородов, первоначально присутствующих в парафиновых фракциях, может быть значительно больше, чем в очищенном товарном парафине или в перекристаллизованных узких фракциях. Количественное определение процентного содержания нормальных парафиновых углеводородов и изомеров с разветвленными цснямп в последнее время проводилось при помощи масс-спектрометра [26]. В товарном парафине этим методом было найдено 90,6% нормальных парафиновых углеводородов, 8,2% парафиновых углеводородов с разветвленными цепями и 1,2% цикло- [c.43]

    Метановый ряд углеводородов начинается метаном (СН4) — газом с точкой кипения —164° С. Газообразными являются также этан, пропан и бутан. Члены ряда с СаН по С1йНз4 включительно являются жидкостями с постепенно повышающейся температурой кипения (от +37 до 252° С), высшие же члены этого ряда до С35Н72 представляют собой твердые тела с повышающейся точкой плавления (от 37 до 76° С). [c.77]

    Твердые углеводороды масляных фракций ограниченно растворяются в неполярных растворителях. Растворимость их подчиняется общим законам теории растворимости твердых веществ в жидкостях. Согласно этой теории, растворимость твердых углеводородов в неполярных растворителях, в том числе в жидких компонентах масляных фракций, уменьшается с повышением их концентрации и молекулярной массы, а также температуры кипения фракции. Растворимость твердых углеводородов увеличивается при повышении температуры, и при температуре плавления парафины и церезины, так же как и жидкие углеводороды, неограниченно растворяются в неполярных растворителях. Растворимость твердых углеводородов в масляных фракциях и неполярных растворителях, имеющая большое значение при выборе условий процессов депарафинизации рафинатов и обезмасливаиия гачей и петролатумов, может быть рассчитана по уравнению [2]  [c.46]

    Структура жидких углеводородов определяется энергетическими возможностями их молекул, причем существует три варианта жидкого состояния длинноцепных углеводородов i[8] полная свобода вращения молекул жидкости при температуре, близкой к температуре кипения состояние, при котором возможно движение отдельных звеньев цепи псевдокристаллическое состояние при приближении к температуре кристаллизации. Переход углеводородов из жидкого состояния в твердое (кристаллизация) и из твердого в жидкое (плавление) определяется характером сил межмолекулярного взаимодействия. Длинноцепные углеводороды, к ко-которым относятся нормальные (начиная с ie) и слаборазветв-ленные парафиновые, нафтеновые и ароматические углеводороды с длинными алкильными цепями, являются неполярными или слабополярными веществами, поэтому взаимодействие между их молекулами происходит в основном за счет аддитивных дисперсионных сил. Длинноцепные углеводороды характеризуются неравномерным распределением сил межмолекулярного взаимодействия. У таких углеводородов наиболее сильно развиты дисперсионные силы, направленные перпендикулярно оси цепи нормальнога строения, что обусловливает их возможность к сближению при понижении температуры, когда тепловое движение молекул умень-щается. При переходе из жидкого состояния в твердое и наоборот площадь поперечного сечения алкильных цепей изменяется. Увеличение площади поперечного сечения молекул при плавлении обусловлено их вращением вокруг связей углерод — углерод, в результате чего молекула может занимать больший объем [8]. Когда эффективное поперёчное сечение молекул превышает допустимое силами межмолекулярного, притяжения, вещество плавится. При одном и том же числе атомов углерода в молекуле наиболее высокой температурой плавления обладают парафины нормального строения, имеющие возможность дисперсионного взаимодействия между всеми атомами углерода соседних молекул. Наличие в-молекуле разветвлений или циклов понижает возможность их ориентировки, так как межмолекулярные силы взаимодействия в этом случае проявляются в основном в цепях нормального строения,, что приводит к резкому снижению температуры плавления. [c.119]

    Было найдено, что с повышением молекулярного веса, температуры кипения и плавления товарных парафинов содержание в них н-алканов уменьшается, а содержание твердых изоалканов, алкилнафтенов и алкилароматических углеводородов возрастает [24]. [c.39]

    Основные физические свойства циклоалканов помещены в табл. 7.13. Температура кипения циклоалканов выше температуры кипения алкенов или алканов с тем же числом атомов углерода в молекуле. Плотность соединений этой группы выше плотности соответствующих нормальных алканов, но ниже плотности аренов. Это свойство иногда используется для определения группового состава фракций нефти. На [ичие радикалов-заместителей резко снижает температуру плавления углеводорода, и тем значительнее, чем меньше углеродных атомов содержит алкильный заместитель. [c.136]

    Циклопарафиыовые углеводороды имеют более высокие температуры кипения, температуры плавления и показатели преломления, чем соответствующие метановые углеводороды. [c.65]

    Отличительной особенностью ароматических углеводородов по сравнению с парафиновыми и циклоалкановыми рав ой молекулярной массы оказывается большая плотность, а также более высокие температуры кипения и плавления. В табл. 1 представлены температуры кипения ароматических углеводородов в диапазоне давлений 0,133—101 кПа и их температуры плавления [3, с. 634— 667]. Как видно из таблицы, с введением заместителей в ядро температура кипения углеводорода повышается, при этом температура плавления резко снижается. Углеводороды с несколькими заместителями, как лравило, имеют более высокие температуры кипения, чем изомерные соединения с одним заместителем (например, ксилолы и этилбензол, триметилбензолы и изопропилбензол, тетраметилбензолы и цимолы или изобутилбензол). Из двух- и более замещенных бензолов более высокую температуру кипения имеют рядовые изомеры (о-ксилол, гемимеллитол, преннтол), а наименьшую—изомеры с симметричным расположением заместителей ("/г-ксилол, мезитилен, дурол). Симметричные изомеры в большинстве случаев обладают наибольшей температурой плавления. Температуры кипения и пла1вления полициклических ароматических углеводородов значительно выше, чем температуры кипения и плавления изомеров бензола с такой же молекулярной массой. [c.10]

    Твердые алканы делят на две группы веществ — собственно парафин и церезин, различающиеся по кристаллической структуре, химическим и физическим свойствам. При одинаковой температуре плавления церезин отличается от парафина большей молекулярной массой, плотностью и вязкостью. Церезин энергично реагирует с дымящей серной кислотой, с соляной кислотой, в то время как парафин реагирует с ними слабо. При перегонке нефти церезин концентрируется в остатке, а парафин перегоняется с дистиллятом. Ранее делали вывод о том, что церезин представляет собой изоалканы. Однако более высокая температура кипения у церезина, чем у изоалканов соответствующей молекулярной массы, не согласуется с таким выводом. Применение хроматографии и комплексообразования с карбамидом позволило провести систематическое исследование твердых углеводородов и получить [c.196]

    Даниые табл. 26 показывают, что с повышением температуры кипения фракций товарных парафинов в них снижается содержание н-парафинов, сначала повышается, а затем снижается процент изопарафинов (в более высоконлавком парафине) и увеличивается количество твердых нафтенов. Ароматические и нафтено-ароматические углеводороды содержатся в небольших количествах и то только во фракциях с высокой температурой кипения. Автор указывает, что ароматические углеводороды извлекаются при селективной очистке и депарафинизации. Эти компоненты находятся среди наиболее низкоплавких компонентов парафинов. На это указывают более низкие температуры плавления твердых ароматических углеводородов в сравнении с другими [67], а также данные по составу твердых углеводородов, извлекаемых при депарафинизации, о чем сказано ниже. Среди изопарафинов Эдвардс нашел 2- и 3-метилпарафины и среди нафтенов —1-цикло-гексил и 1-циклопентилпарафины. [c.50]


Смотреть страницы где упоминается термин Углеводород температуры кипения и плавления: [c.140]    [c.47]    [c.59]    [c.220]    [c.45]    [c.46]    [c.77]    [c.111]    [c.79]    [c.21]    [c.16]    [c.30]    [c.101]   
Ректификация в органической химической промышленности (1938) -- [ c.284 ]




ПОИСК





Смотрите так же термины и статьи:

Температура плавления

Температура плавления кипения



© 2024 chem21.info Реклама на сайте