Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пурины основность

    Мочевая кислота была открыта Шееле (1776 г.) в камнях мочевого пузыря и исследована наряду с другими пуринами Либихом и Велером (1837 г.), Байером (1863 г.) и, наконец, Э. Фишером (начиная с 1881 г.). Пурин, основное соединение всей группы, был получен Э. Фишером (1899 г.) из мочевой кислоты он встречается также в природе. [c.765]


    Пурин. Основное азотсодержащее гетероциклическое соединение, присутствующее в нуклеотидах и нуклеиновых кислотах оно состоит из конденсированных друг с другом пиримидинового и имидазольного колец. [c.1017]

    Проблема здесь состоит в том, чтобы найти процесс обмена, достаточно быстрый при одних условиях, чтобы можно было регистрировать количества обменивающихся протонов, но все же достаточно медленный при других условиях, чтобы можно было провести ферментативное расщепление и электрофоретический или хроматографический анализ, не опасаясь, что доля обменявшихся протонов изменится. По-видимому, прекрасно удовлетворяет этим требованиям тритиевый обмен протона С —Н в пуринах. Основные результаты анализа этого обмена приведены в табл. 22.5. Энергия активации реакции обмена протона С —Н оказывается очень высокой. Так, при изменении температуры от 100 до 90°С время полуреакции для мононуклеотидов увеличивается приблизительно от 1 до 3 часов. Напомним, что дейтериевый обмен при этих условиях был использован для идентификации линий в спектрах ЯМР димеров. При 30°С время полуреакции обмена составляет около 1000 ч. За это время можно провести практически любой химический анализ без заметного изменения доли обменявшихся протонов, если только не работать при [c.300]

Таблица 3.1. Значения рКа Для большинства основных пуринов н пиримидинов Таблица 3.1. Значения рКа Для большинства основных пуринов н пиримидинов
    Имидазольное кольцо содержится в некоторых алкалоидах, являясь, например, составной частью ядра пурина (см. с. 370). Для изготовления клеев, лаков, пленок, волокон, связующих для стеклопластиков используют полимеры, содержащие в основной макроцепи бензимидазольные циклы (полибензимидазолы). [c.366]

    К 1—2 каплям исследуемого эфирного раствора вещества в микро пробирке прибавляют 1—2 капли 1%-ного эфирного раствора 2,4 динитрохлорбензола выпаривают эфир на водяной бане. Желтое ил бурое остающееся пятно указывает на наличие аминов. Гетероциклы содержащие атом азота с основными свойствами, также дают по ложительную реакцию (пиридин, хинолин, имидазол, пурин и т. д.). [c.117]

    Основным веществом этой группы является пурин (темп, плавл. 216 °С). В его молекуле кольцо пиримидина конденсировано с кольцом имидазола  [c.618]

    Основная роль пуринов в живой природе определяется их участием в структуре нуклеотидов и нуклеиновых кислот, осуществляющих важнейшие функции в метаболизме всех форм жизни. [c.353]


    Протонирование. Наличие кислородсодержащей функциональной группы в пуринах почти не отражается на их основности. Так, р/Са гипоксантина составляет 2,0, а 8-оксипурина — 2,6, несмотря на то, что последний, по всей вероятности, должен протонироваться по N1- или Ыз-атомам. Аминогруппы повышают основность пуринов, как это видно на примере аденина (р/Са 4,2), а присутствие [c.358]

    Чем обусловлены основные свойства кофеина н других производных пурина  [c.372]

    Рис 6.1. Основной скелет молекул пурина, птеридина и изоаллоксазина. Показаны различные системы нумерации, применяющиеся для пигментов [c.224]

    Биосинтез всех этих трех групп соединений происходит по одному и тому же основному пути как птерины, так и рибофлавин синтезируются через пуриновые промежуточные продукты. Поэтому в приводимом ниже описании сначала представлен путь образования пурина гуанина, а затем описаны реакции, посредством которых гуанин (в виде гуанозин-9-три-фосфата, ОТР) может превращаться либо в птерин, либо в рибофлавин. [c.232]

    Пиримидины и пурины обладают основными свойствами — их атомы азота могут присоединять протоны, приобретая положительный заряд. [c.37]

    Возвращаясь к коферментам и простетическим группам, к нуклеотидам и порфиринам, мы должны отметить то, что их объединяет— биологическое значение сопряженных гетероциклических систем, содержащих преимущественно азот. В биологии мы встречаемся с производными пиридина, пиримидина и пурина, с пиррольными соединениями. К последним относятся, в частности, и желчные пигменты, основная структура которых подобна раскрытому порфириновому кольцу [c.100]

    Нуклеиновые кислоты, являющиеся основной органической частью ядер клеток, играют главную роль в хранении и передаче генетической информации. Полимерные цепочки нуклеиновых кислот построены из нуклеотидов, которые, состоят из азотистого основания, пентозы и фосфатной группы. Углеводным фрагментом обычно является В-рибоза (в рибонуклеиновых кислотах, сокращенно РНК) или 2-дезокси-В-рибоза (в дезоксирибонуклеиновых кислотах, сокращенно ДНК). Азотистыми основаниями нуклеотидов могут быть производные пурина (соединение 23 в табл. 11) — аденин, гуанин, ксантин и гипоксантин — и производные пиримидина (соединение 30 в табл. И) — урацил, тимин и цитозин. В табл. 60 представлены структурные формулы и нумерация атомов наиболее распространенных пуриновых и пиримидиновых оснований, входящих в состав нуклеотидов. Для краткого обозначения азотистого основания принята система трехбуквенных символов (табл. 60). Эти обозначения, представляющие собой первые три буквы названия соединения, следует употреблять исключительно для обозначения свободных оснований (например, ига — урацил) или их замещенных производных (например, рига — фторурацил). [c.355]

    Так как строение наиболее важных природных пуринов в основном было установлено благодаря исследованиям Эмиля Фишера, в этом кратком обзоре ранних работ необходимо остановиться на том, что явилось, по-видимому, наиболее важным достижением Фишера, а именно на синтезе родоначального ядра — самого пурина. [c.154]

    Очередной том серии монографий по химии гетероциклических соединений — единственного систематического источника обширного материала о сложном и многообразном классе органических соединений — гетероциклах. Данный том включает обзорный материал по химии гетероциклических соединений, содержащих четыре атома азота в кольце или в двух конденсированных циклах — тетразолов, тетразинов и пуринов. Основное место в книге занимает обзор по химии пуринов — соединений, привлекающих в последнее время все большее внимание химиков, биохимиков, бцологов, генетиков, биофизиков. [c.4]

    Циановодород может также превращаться в цианацетилен и циановую кислоту — предшествеииики пиримидинов. Эти реакции были воспроизведены в лабораторных условиях. Ведь уже в 1828 г. Велер получил из циановой кислоты II аммиака мочевину — первую животную субстанцию , синтезированную из неорганических соединений. Весьма вероятно, что все подобные процессы первоначально проходили в водной среде, причем ионы Н+ и ОН выступали в роли кислотного или основного катализатора. Замечательно, что три основных класса азотсодержащих биомолекул — пурины, пиримидины и аминокислоты — образуются прн гидролизе олигомеров, которые непосредственпо получены в разбавленных водных растворах H N. Синтез всех этих биомолекул на первобытной Земле мог бы быть следствием постоянного образования H N под действием электрических разрядов и ультрафиолетового излучения, H N, возможно, растворялся в каплях дождя и переносился ими на поверхность Земли, где могла происходить олигомеризация H N с последующим медленным гидролизом образую- [c.184]

    Алкалоиды — довольно обширная группа азотсодержащих веществ, обладающих основными свойствами (от арабск. алкали — щелочь). Они содержатся чаще всего в растениях, иногда — в животных организмах и обладают высокой физиологической активностью. Большинство известных алкалоидов имеет в своем составе гетероциклические системы, которые были рассмотрены в этой главе, и могут быть классифицированы в зависимости от природы содержащихся в них гетероциклов (например, алкалоиды групп пиридина, пурина, хинолина и т, д.). Вот примеры некоторых известных алкалоидов  [c.371]


    Из производных фурана наибольшее значение имеет фурфурол, из производных пиррола — никотин, атропин, кокаин, гемоглобин, хлорофилл, витамин B 2, нз производных пиразола — пирамидон, антипирин, анальгин. Индоль-ная система входит в состав индиго и его производных производными пиридина являются анабазин, атропин, витамин РР, производными хинолина — хинин, бруцин системы пиримидина и пурина лежат в основе нуклеиновых кислот, кофеина и др. Некоторые Г. с. выделяют из каменноугольной смолы (пиридин и его гомологи, хинолин), при переработке растительного сырья (фурфурол), но основным методом получения Г. с. является синтез. Г. с. широко используют при производстве пластмасс, для ускорения вулканизации каучука, в медицине, в кино- и фотопромышленности, при производстве красителей. [c.71]

    Пуриповые производные имеют большое значение для нуклеиновых кислот, пурин является скелетом мочевой кислоты— основного конечного продукта метаболизма азота у наземных беспозвоночных и пресмыкающихся. Кофеин — воз- [c.309]

    Синтез первого представителя этого ряда - циклогомолога кофеина 1 - был осуществлен Ивановым и Богатским [1, 2] из кофеина 2. Интерес к соединениям типа В обусловлен, в основном, их структурным родством как с соответствующими пуринами, так и 1,4-бенздиазепинами, изостерами которых они являются. [c.200]

    Одним из основных методов получения циклогомологов ксантинов является их синтез на основе природных пуринов. [c.200]

    Пионер пептидной и белковой химии Эмиль Фишер в 1892 г. принял после Гофмана кафедру в Берлинском университете. Его выдающиеся работы в области углеводов и пуринов отмечены в 1902 г. Нобелевской премией по химии. В 1900 г. этот замечательный ученый обратился к химии белка. Результаты, полученные им всего за 5 лет в этой новой области, до сих пор считаются лионерскими, В докладе Химическому обществу б января 1906 г. Фишер обобщил результаты своей работы в области химии аминокислот, пептидов и белков [1]. Доклад Фишера привлек пристальное внимание исследователей, поскольку в нем были развиты основные принципы синтеза пептидов и белков, которые продолжают работать и сегодня. [c.99]

    Усилиями этих ученых и их сотрудников удалось установить, что в природе существует два типа нуклеиновых кислот. Один из них содержит два пурина — аденин й гуанин, два пиримидина — цитозин и ТИМИН, остатки дезоксипентозы и фосфорной кислоты. Другой вместо тимина содержит урацил, а вместо дезоксипентозы — пентозу. Так как дезоксипентозонуклеиновые кислоты (в современной терминологии — дезоксирибонуклеиновые кислоты, ДНК) выделяли в основном из тимуса теленка, а пентозонуклеино-вые кислоты (рибонуклеиновые кислоты, РНК) — из дрожжей и растений, то долгое время существовала уверенность в том, что ядра клеток животных содержат только ДНК, а ядра клеток растений — только РНК. И лишь к середине 1930-х годов было до- <азано, что ДНК и РНК содержатся в каждой живой клетке. Первостепенная роль в утверждении этого фундаментального положения принадлежит А. Н. Белозерскому, впервые выделившему ДНК [c.5]

    Химия гетероциклов составляет значительную часть органической химии. Объем материала очень велик, и в рамках данного издания изложить его полностью ие представлялось возможным. При отборе материала и его расположении мы старались учесть возможные запросы будущих читателей. Некоторым из них необходимы лишь начальные сведения о химии гетероциклов, поэтому в книгу следовало вк 1ючить более простые и обычные системы однако специалистам нужна информация, причем более подробная, о сложных и меиее стандартных структурах, представляющих практический интерес, поэтому некоторые разделы, например химия пуринов (гл. 17.5) и мезоионных соединений (гл. 20.4), рассмотрены более глубоко. Вследствие такого подхода был избран традиционный способ изложения гетероциклические системы сгруппированы по типу и числу гетероатомов, размеру и числу имеющихся колец. Чтобы не нарушить полноты изложения в других разделах этого издания, из тома 4, как правило, исключены описания насыщенных гетероциклических систем. Например, циклические простые эфиры и циклические амины рассмотрены в основном в главах 4.4 и 6.1. [c.14]

    К основным реакциям обмена веществ, протекающим в животном организме или микроорганизмах, связанным с синтезом и расщеплением некоторых а-аминокислот, пиримидинов, пуринов, нуклеиновых кислот и других соединений, катализируемых птериновым коферментом и его активными формами в содержащих их ферментных системах, относятся три типа обратимого переноса одноуглеродных групп — формильной и формиминой (—СНО и — H=NH), оксиметильной (— HjOH) и метильной (- Hg) [299]. и реакции следующие  [c.497]

    Общие свойства. Птерины (а также встречающиеся в природе пурины) представляют собой амфотерные молекулы со слабыми кислотными и основными свойствами. Они плохо растворимы в воде, хорошо растворяются в разбавленных кислотах и щелочах, умеренно растворимы в полярных органических растворителях и не растворяются в неполярных. Большинство лтеринов являются потенциальными окислительно-восстановительными агентами, однако при физиологических парциальных давлениях кислорода они полностью окислены. [c.228]

    Эти данные важны для классификации видов. Но, конечно, полный анализ видовой специфичности ДНК требует определения ее первичной структуры. Белозерский и его сотрудники установили ряд относящихся сюда фактов. Так, в цепи ДНК животных МЦ сосредоточен в основном в последовательностях пурин — МЦ —пурин напротив, у бактерий таких последовательностей нет. У Е. oli МАП фигурирует в триплетах пиримидин — МАП — пиримидин и пиримидин — МАП — пурин [29]. Коэффициент специфичности (т. е. доля Г + Ц в %) не показателен, он может совпадать у весьма далеких видов. [c.90]

    Синтетические процессы в клетках — синтез белков, нуклеиновых кислот, пуринов, пиримидинов, липидов, сахаров и др. представляют собой, как правило, эндергонические процессы, т.е. процессы, требующие затраты свободной энергии. Биосинтез осуществляется в открытой термодинамической системе— клетке в результате сопряжения с экзергоническими процессами гидролиза АТФ и окисления НАД-Н, НАДФ-Н и ферредоксина, в ходе которых освобождается энергия. Б конечном счете восстановленные коферменты также возникают за счет АТФ — наиболее универсального аккумулятора энергии (глюкоза фосфорилируется АТФ). Основные биосинтетические реакции идут с участием ферментов киназ или синтетаз. [c.108]

    Поскольку встречающиеся в природе пурины представляют собой амино-и/или кислородсодержащие производные, нет ничего удивительного в том, что большинство работ по химии пуринов имеет отношение к таким производным, и вследствие этого примерам простых реакций, таких, как в других главах, где они приведены как типичные, будет уделено ограниченное внимание. Изучение пуринов началось с интереса к встречающимся в природе производным, поэтому используется в основном тривиальная номенклатура. Нуклеозиды представляют собой производные сахаров [в основном 9-(рибозиды) или 9-(2 -дезок-сирибозиды)] и пуриновых (или пиримидиновых) оснований. Например, адено-зин представляет собой 9-(рибозид) аденина, который, в свою очередь, имеет тривиальное название 6-аминопурин, а нуклеотид — это 5 -фосфат (или ди-, или трифосфат) нуклеозида, например, аденозин-5 -трифосфат (АТФ). [c.576]

    Присутствие в молекуле пурина кислородсодержащей функциональной группы не оказывает особого влияния на основность пурина так, величина рКа гипоксантина равна 2,0. Наличие аминогрупп повышает основность пуринового производного (рЛ , аденина равна 4,2), а наличие оксогрупп уменьшает основность (рА гуанина равна 3,3). Расположение протона именно в пятичленном гетероцикле в кристаллической протонной соли гуанина определено методом рентгеноструктурного анализа это прекрасно иллюстрирует чрезвычайно тонкое взаимодействие заместителей и кольцевых гетероатомов, и, хотя 2-амино-1руппа повышает основность пурина, это вовсе не означает, что протонирование обязательно пойдет по соседнему положению Му). [c.579]

    Существует два основных подхода к построению циклической системы пурина. Категория, которую можно определить как процессы, идущие в одной колбе , представляет собой адаптацию процессов, происходивших, возможно, в добио- [c.596]

    Как в современной, так и в старой литературе существует большая несогласованность и путаница в номенклатуре пуриновых соединений. Проблему неопределенности номенклатуры пуринов следует признать достаточно серьезной по двум основным причинам. Во-первых, большое число пуриновых соединений имеет исторические тривиальные названия, которые давались первооткрывателями например, аденин (6-аминопурин), гуанин (2-амино-6-окси-пурин), ксантин (2,6-диоксипурин), кофеин (1,3,7-триметилпуриндион-2,6). Употребление тривиальных названий для этих соединений, по-видимому, следует считать более предпочтительным. Действительно, hemi al Abstra ts помещает,большинство наиболее распространенных пуринов в отдельных рубриках под тривиальными названиями. Однако при этом возникают труд- [c.131]

    Интересно, что соединение XV в 50-м томе этого реферативного журнала имеет два названия — 2-тиоксантин и 2-меркапто-6-пуринол. Аналогично в 48-м томе соединение XVI в одном месте названо 2,6-пуриндиолом, а в другом — ксантином (пурин-2,6-[1Н,ЗН]-дионом). После основного названия гипоксантин (С. А., 61) в скобках приведены следующие пурин-6-ол, 1Н-пурин-6-ол, ЗН-пурин-6-ол, 8Н-пурин-6-ол, 9Н-пурин-6-ол, пурин-6-(1Н)-он, [c.133]


Смотреть страницы где упоминается термин Пурины основность: [c.5]    [c.164]    [c.170]    [c.141]    [c.195]    [c.112]    [c.75]    [c.188]    [c.77]    [c.33]    [c.134]    [c.139]    [c.199]   
Основы химии гетероциклических соединений (1975) -- [ c.356 , c.357 ]




ПОИСК





Смотрите так же термины и статьи:

Пурин



© 2024 chem21.info Реклама на сайте