Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители и растворение

    Слабым местом теории Ван-Лаара является допущение о равенстве размеров молекул растворителя и растворенного вещества. Мелвин-Хьюз разработал статистическую теорию бинарных растворов, которая с учетом различия в размерах молекул дает следующее уравнение для осмотического давления  [c.34]


    В неидеальных растворах мерой взаимодействия в них молекул растворителя и растворенных частиц является активность, которую называют еще эффективной концентрацией. Для растворов неэлектролитов и электролитов активности можно рассчитывать по закону распределения, по понижению давления над растворами, по повышению температуры кипения или понижению температуры замерзания, по измерению электропроводности или электродвижущих сил раствора. [c.239]

    Экстракт, т. е. жидкость, полученную при экстрагировании и состоящую из растворителя и растворенного вещества, высушивают при помощи водоотнимающих средств (см. стр. 154), после чего растворитель отгоняют, собирая установку, описанную выше (см. стр. 129). [c.142]

    Во многих случаях деление их на растворитель и растворенные вещества условно. Обычно компонент, находящийся в избытке по сравнению с другими, называют растворителем, остальные же компоненты—растворенными веществами. Так, можно иметь растворы спирта или серной кислоты в воде и растворы воды в спирте или в серной кислоте. Если одним из компонентов раствора является жидкость, а другими—газы или твердые вещества, то растворителем считают жидкость. [c.159]

    Таким образом, в предельно разбавленном растворе коэффициенты активности растворителя и растворенных веществ равны единице, если стандартные состояния выбраны для раствори теля—по уравнению (VI, 26а), для растворенных веществ—по уравнению (VI, 27). [c.211]

    Константы В и С отражают отклонение раствора от закона предельно разбавленных растворов (закона Вант-Гоффа), связанное со значительной величиной 2 и со специфическим взаимодействием между растворителем и растворенным веществом. [c.260]

    Из данных первой и второй колонок табл. 1.1 следует, что имеет место большое различие в экстракционной способности растворителей при, казалось бы, малых структурных изменениях (сравните цис- и транс-1,2-дихлорэтилен, 1,1,2-трихлорэтан, 1,1,2,2-тетрахлорэтан и пентахлорэтан). Специфические взаимодействия между растворителем и растворенным веществом должны играть определенную роль даже в таких предположительно несольватирующих растворителях. С практической точки зрения еще более важно, что низкокипящие хлорированные углеводороды (хлороформ, дихлорметан и в меньшей сте- [c.24]

    Различные взаимодействия между растворителем и растворенным веществом, растворителем и мембраной, растворенным веществом и мембраной еще больше усложняют выбор полимера. Если взаимодействие между растворенным веществом и мембраной сильное, а взаимодействие между растворителем и растворенным веществом слабое, может произойти избирательная адсорбция растворенного вещества мембраной, ведущая к ее закупориванию или набуханию. В любом случае проницаемость мембраны и ее селективность по мере адсорбции могут быстро ухудшаться. [c.70]


    Расчет процесса разделения разбавленных растворов спиртов [180]. На обратноосмотическое разделение с использованием ацетатцеллюлозных мембран влияют одновременно полярные и неполярные (гидрофобные) характеристики молекул растворителя и растворенного вешества [c.226]

    Рассмотренные выше расчетные уравнения были выведены для систем газ—твердое тело или газ—жидкость с газом, очень слабо растворимым в жидкости. При этом принималось, что в газовой фазе растворитель и растворенное вещество находятся в молекулярной форме. Однако имеется очень важный класс газовых растворов, в которых и растворитель, и растворенное вещество в той или иной степени ионизированы. К ним относятся, например, растворы солей, окислов и гидратов окислов металлов в плотном надкритическом водяном паре, играющем очень важную роль в ряде геологических и технических процессов. [c.14]

    Растворы состоят иэ растворителя и растворенного вещества (веществ). Эти понятия условны. Если одним из составляющих растворов веществ является жидкость, а другими газы или твердые вещества, то растворителем обычно считают жидкость. В других случаях растворителем считают тот компонент (составную часть), которого больше. [c.230]

    Растворитель и растворенные вещества. Эти понятия в известной степени условны. Какое вещество, например, считать растворителем в смеси, состоящей наполовину из воды и спирта Иногда за растворитель принимают то вещество, которое при охлаждении раствора кристаллизуется первым. Так, из водно-спиртового раствора сначала выделяется вода ее можно считать здесь растворителем. Но, например, из многих водно-солевых растворов кристаллизуется сначала соль, а иногда одновременно и соль и лед. Можно принять за растворитель и то вещество, которое находится в преобладающем количестве, но при этом надо иметь в виду, что нередко оно при охлаждении раствора отвердевает не первым. Если одним из составляющих раствор веществ является жидкость, а другими — газы или твердые вещества, то растворителем обычно считают жидкость. [c.131]

    Когда оба компонента (и растворитель, и растворенное вещество) близки между собой по составу и строению молекул, то сила взаимного притяжения молекул обоих компонентов примерно одинакова. В таких простейших системах давление насыщенного пара р данного компонента А над раствором прямо пропорционально относительному содержанию его молекул в растворе, т. е. [c.298]

    Второй эффект, принятый во внимание Уэббом, связан с явлением электрострикции, т, е, сжатия, наблюдаемого при растворении, В результате электрострикции объем раствора становится меньше, чем сумма объемов чистого растворителя и растворенного вещества. На процесс сжатия расходуется некоторое количество энергии. Учет обоих эффектов приводит к тому, что величины энергий и теплот гидратации, вычисленные по формуле Борна — Уэбба, уменьшаются и приближаются к опытным, В теории Уэбба растворитель по-прежнему рассматривается ка ч непрерывная среда и не учитывается ни строение его молекул, пн структура жидкости. [c.56]

    Установлено, что при экстракции неполярными экстрагентами при гемпературах вблизи критического состояния растворителей также проявляется избирательная растворимость высокомолекулярных углеводородов масляных фракций. Обусловливается это тем, что с приближением температуры экстракции к критической про — исхо, ит резкое снижение плотности растворителя и соответственное ослабление прочности связей между молекулами растворителя и растворенных в нем углеводородов. В то же время силы дисперсионного взаимодействия между молекулами самих углеводородов при этом практически не изменяются. В результате, при определен — 1ГЫХ гемпературах внутримолекулярные силы углеводородов могут превысить межмолекулярные силы взаимодействия между растворителем и углеводородами и последние выделяются в виде дисперсной фазы. При этом, поскольку энергия дисперсионного взаимодействия является функцией от молекулярной массы молекулы, в первую очередь из раствора выделяются наиболее высокомолекулярные смолисто-асфальтеновые соединения, затем по мере повышения температуры — углеводороды с меньптей молекулярной массой. При температурах, превышающих критическую,из раствора выделяются все растворенные в нем соединения независимо от молекулярной массы и химической структуры углеводородов (рис.6.4). [c.221]

    В этом случае взаимодействия внутри растворителя становятся величиной порядка ван-дер-ваальсовых сил, и, по всей вероятности, нельзя пренебрегать последними при рассмотрении взаимодействий диполь — растворитель и приписывать все изменение скорости диэлектрической проницаемости. Уравнение (XV.И.2) может применяться также для реакций между полярными молекулами в растворе [64]. Однако до сих пор не ясно, смогут ли эти уравнения быть использованы для изучения строения активированного комплекса или для дальнейшего развития теории растворов. (Автору кажется, что более детальная молекулярная модель раствора, учитывающая только взаимодействия между ближайшими соседними частицами, не так уж сложна, и она дала бы, вероятно, более интересные и полезные сведения. Параметрами в таком случае служили бы только дипольные моменты и радиусы молекул растворителя и растворенных частиц.) [c.458]


    Отрицателькую адсорбцию можно истолковать только таким образом, что растворитель адсорбируется сильнее, чем растворенное вещество я при зтом повышается его молекулярная концентрация относительно исходного раствора. В системах неограниченно смешивающихся жидкостей, для которых можно рассматривать весь интервал концентраций, между растворителем и растворенным веществом отсутствует какое бы то ни было различие. По этой причине применение уравнения (2) к изотермам З-образного типа лишено смысла. [c.138]

    Прн растворении кристаллов происходит их разрушение, что требует затраты энергии. Поэтому растворение должно было бы сопровождаться поглощением теплоты. Если же наблюдается обратный эффект, то это показывает, что одновременно с растворением происходит кякое-то взаимодейстпие между растворителем и растворенным веществом, ири котором выделяется в виде теплоты больше энергии, чем се расходуется ип разруи]еиие кристаллической решетки. [c.216]

    Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чем ближе контакт между растворимым веществом и растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа" как растворенного вещества, так и растворителя. Сольватная оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцепторными свойствами. Рол  [c.17]

    Полярные растворители растворяют полярные молекулярные вещества благодаря диполь-дипольному взаимодействию. Энергия, высвобождаемая при образовании диполь-дипольных связей между полярными молекулами растворителя и растворенного вещества, достаточна для разрыва межмолекулярных связей в молекулярных кристаллах (рис. 14-21). Например, лед растворим в жидком аммиаке, но не в бензоле потому, что NH3-полярная молекула, а gHj-неполярная. [c.623]

    Полупроницаемые мембраны могут быть пористыми и непористыми. Непористые полимерные мембраны являются квазигомо-генными гелями, через которые растворитель и растворенные вещества проникают под действием градиента концентраций (молекулярная диффузия). Поэтому такие мембраны часто называют диффузионными. Скорость, с которой проходят через мембрану отдельные компоненты. [c.45]

    При образовании раствора в общем случае происходит изменение свойств и растворителя, и растворенного вещества (растворенных веществ). Это обусловлено тем, что в растворе действуют силы, вызывающие и межмолекулярное взаимодействие (электростатическое, ван-дер-ваальсовы силы), ионно-дипольное взаимодействие, проявляющиеся на сравнительно значительных расстояниях, и специфическое взаимодействие (донорно-акцепторное, водородная связь), сказывающееся на сравнительно небольших расстояниях. Первое является общим для всех веществ оно связано с совокупностью физических процессов. Второе связано с перестройкой электронных оболочек молекул, атомов и ионов оно обусловлено химическими изменениями. [c.133]

    ТО оба компонента склонны к образованию друг с другом сольватов или химических соединений разной степени прочности. В этом случае наблюдается повышенная растворимость вещества, а между растворителем и растворенным веществом часто образуются водородные или доиорно-ак-цепторные связи. Примером большой растворимости с образованием водородных связей является раствор этилового спирта в воде, а с образованием донорно-акцепторной связи — раствор аммиака в воде. Растворимость спирта не ограничена, а аммиак в воде растворяется в соотношении приблизительно 700 1 (по объему). [c.142]

    Обменные реакции между растворителем и растворенным веществом, которые обычно протекают с образованием сла-бодиссоциирующих или труднорастворимых веществ, представляют особый интерес. Поэтому мы посвятим им отдельный раздел. Реакции взаимодействия между составными частями растворителя и растворенного вещества называются сольволиэом (для воды — гидролизом).  [c.201]

    В середине прошлого столетия при изучении явлений растворимости Грэм обратил внимание на то, что некоторые вещества, нерастворимые (в обычном смысле этого слова) в воде, могут все же в известных условиях образовывать виблне однородные по внешнему виду растворы. Такие растворы по многим свойствам обнаружили существенные отличия от обычных растворов. Так, в частности, растворенные вещества в этих растворах не проходя сквозь перепонки из некоторых естественных или искусственных материалов (растительный пергамент, пленки из целлофана, коллодия и др.), через которые легко проходят растворитель и растворенные вещества в обыкновенных растворах. В результате проведенных исследований этих явлений первоначально был сделан вывод, что вещества, которые проходят через подобные перепонки, обладают способностью кристаллизоваться из данного раствора, тогда как вещества, задерживающиеся ими, не способны кристаллизоваться. Первые вещества, по предложению Грэма, были названы кристаллоидами, а последние коллоидами — по названию клея (по-гречески — колла), как одного из представителей веществ этой группы. Первые образуют при растворении обычные, или, как их принято называть, истинные растворы, последние же образуют коллоидные растворы. [c.503]

    Лиофильными принято называть такие коллоиды, частицы которых в большом количестве связывают молекулы дисперсионной среды, например некоторые мыла в водной среде. Сюда относили раньше и растворы высокомолекулярных органических соединений (белки, целлюлоза и ее эфиры, каучук, многие искусственно получаемые соединения). Однако, как показало изучение внутреннего строения и свойств таких систем, производившееся в недавнее время, и, в частности, работы В. А. Каргина, Добри и Флори, эти системы представляют собой истинные растворы, т. е. молекулярно-дисперсные, а не коллоидные системы. Они являются гомогенными системами. Характерные отличия их свойств от свойств других групп истинных растворов обусловливаются в основном сильным различием в величине частиц растворителя и растворенного вещества и строением этих частиц, представляющих собой очень длинные и гибкие молекулы (цепное строение). Переход их в раствор облегчается высокой степенью сольватации. Благодаря большому размеру молекул растворы этих веществ по многим свойствам являются близкими коллоидным растворам и образуют самостоятельную группу растворов — растворы высокомолекулярных соединений. Более детально свойства этих растворов будут рассмотрены в гл. XVII ( 244). [c.508]

    Поскольку атомы растворителя и растворенного элемента твердого раствора имеют различ1п-)1е размеры, кристаллическая решетка твердого раствора замешения [c.124]

    На практике наиболее часто приходится встречаты я с жидкими растворами. В жидком растворе обычно различают растворитель и растворенное вещество, хотя с термодинамической точки зрения все составляющие раствора равноценны. Под растворителем понимают то вещество, которое имеется в растворе в большем количестве. Остальные компоненты, присутствующие в растворе в меньших количествах, называются растворенными веществами. Такое деление на растворитель и растворенное вещество крайне условно, особенно если количества компонентов в растворе соизмеримы. Для образования жидкого раствора в качестве растворителя применяют воду или различные органические жидкости (спирты, кетоны, кислоты, эфиры, углеводороды). Нередко в качестве растворителей используют жидкий аммиак, серную кислоту и др. [c.339]

    Растворы газов в жидкостях можно рассматривать как системы, в которых устанавливается равновесие между жпдкой фазой, содер-жаш,ей растворитель и растворенный газ, и газовой фазой, содержащей данный газ и пары растворителя. Если растворитель относительно мало летуч, то равновесие можно представить как равновесие между раствором и практически чистым растворяемым газом. [c.381]

    Если идеальный раствор состоит из двух летучих компонентов, то закон Рауля справедлив для растворителя и растворенного вещества Р, = Р -Х и Р, = Рз -х,- Общее давление пара над идеаяыгым раствором равно сумме парциальных давлений отдельных компонентов (закон Дальтона)  [c.56]

    R - улнверсальная постоянная, ис зависящая от природы растворителя и растворенного вещества и численно равная газовой постоянной (0,082 л атм/(моль-К)). [c.60]


Смотреть страницы где упоминается термин Растворители и растворение: [c.430]    [c.155]    [c.396]    [c.224]    [c.39]    [c.32]    [c.34]    [c.171]    [c.157]    [c.231]    [c.132]    [c.136]    [c.131]    [c.240]    [c.357]    [c.361]    [c.372]    [c.377]    [c.140]    [c.57]   
Смотреть главы в:

Руководство по анализу кремнийорганических соединений -> Растворители и растворение




ПОИСК





Смотрите так же термины и статьи:

Влияние природы растворителя на набухание и растворение натрийдивиниловых полимеров

Емкости аппараты для растворения также Растворители

Зависимость интегральных теплот растворения некоторых электролитов в неводных растворителях со средними и низкими диэлектрическими проницаемостями от концентрации

Зависимость процессов растворения и плавления от свойств полимера и растворителя

Интегральная теплота растворения иодистого натрия в водно-диоксановом растворителе при

Интегральная теплота растворения растворителе

Классификация растворителей и результаты растворения

Металлы, растворение в органических растворителях в присутствии

Обработка углей различными растворителями. Растворение углей

Определение сольватного слоя растворителя по данным теплот растворения и набухания

Опыт 5. Влияние концентрации иона-растворителя на растворение осадков

Полимера с растворителем взаимодействие критическая температура растворения

Полимера с растворителем взаимодействие растворение

Растворение без нагревания растворителя

Растворение в органических растворителях

Растворение действие растворителя на сосуд

Растворение и свойства некоторых органических растворителей

Растворение полимеров виды растворителей

Растворение полимеров природа полимера и растворителя

Растворение последовательное дробное система растворитель осадитель, выбор

Растворение соли в восходящем потоке растворителя

Растворение целлюлозы в водных кислотных растворителях

Растворители целлюлозы и механизм растворения

ТОВ В НЕВОДНЫХ РАСТВОРИТЕЛЯХ И ОТНОСИТЕЛЬНЫЕ ПАРЦИАЛЬНЫЕ МОЛЬНЫЕ ЭНТАЛЬПИИ КОМПОНЕНТОВ Интегральные теплоты растворения. О. И. Рябченко

ТОВ В СМЕШАННЫХ РАСТВОРИТЕЛЯХ И ОТНОСИТЕЛЬНЫЕ ПАРЦИАЛЬНЫЕ МОЛЬНЫЕ ЭНТАЛЬПИИ КОМПОНЕНТОВ Интегральные теплоты растворения. Г. В. Карпенко

Температурная зависимость интегральных теилот растворения электролитов в воде и в неводных растворителях

Температурная зависимость интегральных теплот растворения электролитов в воде и неводных растворителях

Температурные коэффициенты интегральной теплоты растворения в воде п в неводных растворителях

Теплота растворения и параметр термодинамического взаимодействия X, различных растворителей с полиэтилметакрилатом

Термодинамические характеристики процесса растворения электролитов в неводных растворителях

Термопластификация, термическое растворение и экстрактивные методы переработки ТГИ органическими растворителями

Щелочные металлы, растворение в органических растворителях в присутствии краун-эфиров

Энтропийная характеристика структурных изменений растворителя при растворении солей



© 2025 chem21.info Реклама на сайте