Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диполь-дипольное

    При минимальной энергии взаимодействия наблюдается физическая адсорбция. В основе ее лежит диполь-дипольное взаимодействие Ван-дер-Ваальса молекула сорбата и сорбирующая поверхность поляризуют друг друга, и взаимодействие между индуцированными диполями порождает теплоту адсорбции. Ее величина обычно не превышает 0,015—0,03 аДж. При обменном взаимодействии электронов твердого тела с частицей сорбата, когда энергия связи составляет около 0,15 аДж, связь имеет химическую природу, и такая адсорбция именуется хемосорбцией [206]. [c.182]


    Условия, благоприятствующие переносу энергии а) большое перекрывание первой полосы поглощения акцептора с полосой испускания донора и б) высокий выход флуоресценции донора. Роль донора и акцептора могут играть молекулы одного и того же вещества при условии, если его спектры поглощения и флуоресценции хорошо перекрываются. Эффективность межмолекулярного диполь—дипольного перехода характеризуют критическим расстоянием Яс. — расстоянием между донором и акцептором, а котором вероятность переноса равна вероятности спонтанной дезактивации. Это расстояние рассчитывают по формуле Ферстера [c.55]

    При деформации вязкопластичных диэлектрических материалов, содержащих дипольные молекулы, может наблюдаться мозаичное распределение зарядов. Оно объясняется тем, что макромолекулы, которые обычно содержат много полярных групп, обладающих дипольными моментами, не могут перемещаться как единый диполь. Дипольные моменты полярных групп могут ориентироваться вдоль их осей, и, таким образом, представленная схема может иметь смысл. [c.133]

    Полярность молекул оказывает заметное влияние на свойства образуемых ими веществ. Полярные молекулы стремятся ориентироваться по отношению друг к другу разноименно заряженными концами. Следствием такого диполь-дипольного взаимодействия является взаимное притяжение полярных молекул и упрочнение связен между ними. Поэтому вещества, образованные полярными молекулами, обладают, как правило, более высокими температурами плавления и кипения, чем вещества, молекулы которых неполярны. [c.127]

    Полярные молекулы образуют устойчивые молекулярные кристаллы, притягиваясь друг к другу противоположно заряженными концами (рис. 14-16). Это притяжение называется диполь-дипольным взаимодей- [c.618]

    В табл. 18-1 сравниваются теплоты и энтропии испарения ряда распространенных жидкостей. Прежде всего можно заметить, что энтропии испарения всех жидкостей приблизительно одинаковы. Неупорядоченность, вносимая в систему из 6,022 -10 молекул, находящихся в тесном контакте в жидкости, когда их разъединяют при образовании пара из жидкости, сравнительно мало зависит от природы этих молекул. Это обобщение известно под названием правила Трутона, по имени ученого, который установил его эмпирически в XIX в. Наиболее высокие молярные энтропии испарения, превышающие молярные энтропии других веществ на 10-20 энтр. ед., имеют метанол, этанол и вода. Повышенные энтропии испарения этих веществ объясняются тем, что их полярные молекулы удерживаются в жидкости друг возле друга силами диполь-дипольного взаимодействия и водородными связями. Повышенная степень упорядоченности жидкости означает, что для образования из нее газа требуется внести несколько большую неупорядоченность. Поскольку для разъединения взаимодействующих молекул такой жидкости требуется больше энергии, теплота ис- [c.123]


    Спаривание спинов й вследствие диполь-дипольных взаимодействий [c.131]

    В растворе углеводородов соли тяжелых металлов находятся в недиссоциированной форме. В отсутствие полярных молекул молекулы солей ассоциируются в мицеллы [29]. Средний размер мицелл тем больше, чем выше концентрация соли в растворе. Например, степень ассоциации стеариновокислой меди в толуоле при комнатной температуре 6,4 при ее концентрации ОД г/кг раствора и 7,1 при концентрации 0,26 г/кг. Мицеллы образуются из-за диполь-дипольного притяжения частиц, и чем выше дипольный момент соли, тем выше степень ассоциации [29]. В результате образования полярных продуктов в окисляющемся углеводороде степень ассоциации молекул соли снижается, поскольку появляются комплексы типа соль — продукт. Вместе с тем эти продукты конкурируют с ROOH как лигандом в координационной сфере металла, поэтому при накоплении продуктов окисления скорость каталитического распада ROOH на радикалы снижается. [c.193]

    Если в мембране возникает интенсивное взаимодействие между газом и матрицей под действием электростатических ориентационных сил (диполь-дипольное взаимодействие), причем и е т етт, ТО энтальпия смешения отрицательна, что следует непосредственно из уравнений (3.16) и [c.75]

    Механизм взаимодействия капель в постоянном поле такой же, как и в переменном поле. Однако диполь-дипольное контактирование в электростатическом поле усиливается кулоновским взаимодействием частиц, сопровождаемым интенсивным встречным движением капель. В результате улучшается обработка и очистка светлых нефтепродуктов. [c.375]

    Диполь-дипольное взаимодействие есть [c.195]

    Диполь-дипольное взаимодействие Диполь-дипольное взаимодействие в биполярных апротонных растворителях  [c.98]

    Такая интерпретация членов уравнения (4.77) в действительности хорошо согласуется с результатами квантовомеханических расчетов, в которых энергия дисперсионного взаимодействия вычисляется как вероятное значение возбужденной части оператора Гамильтона. Эта часть оператора складывается из кулоновских взаимодействий электронов и ядер одного атома с электронами и ядрами другого атома. Если далее этн кулоновские составляющие разложить в ряд Тейлора и сгруппировать члены, то в результате получится ряд, содержащий явно выраженные части диполь-дипольного, диполь-квадрупольного и т. д. взаимодействий. Это обстоятельство не должно вызывать удивления, так как разложенная в ряд возбужденная часть оператора по своей природе является чисто электростатической, а потому и все разложение будет представлять собой мультипольное разложение классической электростатики. Если вероятные значения квантовомеханических величин усреднить по времени, то получится полуклассическое описание. [c.200]

    Как уже было отмечено в разд. 2.7, в случае зависящего от ориентации потенциала квантовомеханический эффект обусловлен квантованием вращательной энергии. Поправка на диполь-дипольный член в потенциале была рассчитана Штокмайером [138]. Она может быть записана следующим образом  [c.235]

    Из выражения энергии диполь-дипольного притяжения, учитывающего заряд двойного ионного слоя и концентрацию электролита, следует известное выражение для сил взаимодействия частиц с деформирован- [c.15]

    В неполярной среде ион отличается значительным дальнодействием по сравнению с полярными жидкостями в отличие от водных растворов, где ион полностью нейтрализуется полярными молекулами, в неполярной среде происходит лишь частичная компенсация его заряда вследствие малого содержания дипольных молекул и, по-вндимому, из-за сложного строения дифильных молекул. Носители тока в неполярных средах могут иметь переменную величину подвижность таких ассоциатов меньше, чем у исходного иона. Возможно, при электрической проводимости большую роль играют именно такие системы с центральным ионом. Электростатическое диполь-дипольное взаимодействие молекул невелико и, по-видимому, не имеет большого значения при образовании молекулярных димеров, где главное место отводится водородным связям. [c.27]

    Покажем, что пределы применимости этого уравнения можно расширить, а точность его повысить, если использовать последующие члены разложения выражения (1). В качестве примера рассмотрим потенциал (3),содержащий только один ориентационный вклад диполь-дипольного взаимодействия. В случае цилиндрически симметричных молекул этот вклад имеет следующий вид  [c.43]

    Диполь-дипольное взаимодействие 6,78 [c.20]

    Диполь-дипольное (ориентационное) So l/d 10—20 NH3—NH3 Н2О—HjO [c.39]

    Ориентационное (диполь-дипольное) взаимодействие проявляется между полярными молекулами. В результате беспорядочного теплового движения молекул при их сближении друг с другом й1 ноименно заряженные концы диполей взаимно отталкиваются, а противоположно заряженные притягиваются. Чем более полярны молекулы, тем сильнее они притягиваются и тем самым больше ориентационное взаимодействие. [c.90]


    В теории молекулярных силовых полей учитывается все мно-гообразне взаимодействий, включая диполь-дипольное, квадру-иоль-квадруполь[1ое и диполь-квадрупольное. Исследованиями в этой области было показано, что растворители, обладающие близкими по величине силовыми полями, взаимно растворимы. Распределение по величине силовых полей различных растворителей приводит к петле Семенченко, на одной ветви которой укладываются слабые взаимодействия, на другой ветви — сильные. В качестве критерия, определяющего энергию взаимодействия, предлагается использовать диэлектрическую проницаемость, плотность энергии когезии. Введено понятие об обобщенных моментах, эффективном заряде и эффективном радиусе. Несмотря на то что теория молекулярных силовых полей достаточно строго описывает механизм взаимодействия молекул в растворе, пользоваться ею для расчета систем практически невозможно [59, 60], поскольку математический аппарат не обеспечен исходными данными в справочной литературе. [c.213]

    Представления о наличии в структуре ГС периферийной части с разрушенной молекулярной структурой — поднлавленно-го слоя — высказаны в работах [100, 126, 485]. Трехслойная модель ГС, предложенная в [485], была развита далее в рабо-тях [476]. В. Дрост-Хансен предполагает существование различных типов структурированной воды [477]. На близких расстояниях (5—10 молекулярных диаметров) структурирование может возникать за счет ион-дипольного и диполь-дипольного взаимодействия ( высокоэнергетическое ). Структурирование на больших расстояниях (до сотен молекулярных диаметров) может протекать за счет кооперативных низкоэнергетических взаимодействий, Такой подход позволяет объяснить немонотонную зависимость расклинивающего давления от температуры, найденную Г. Пешелем и сотр. [479, 487]. Наличие максимумов расклинивающего давления в этом случае обусловлено резкими структурными перестройками ГС, происходящими в исследован- [c.171]

    Адсорбция дифильных молекул, вероятно, сказывается различным образом на зависимости энергии пленки от ее толщины h. При больших толщйнах диполь-дипольное взаимодействие молекул должно приводить к увеличению глубины вторичного минимума i/a min. При малых значениях h, сравнимых с удвоенным размером молекул ПАВ, следует ожидать противоположного влияния адсорбционных слоев на утончение пленки, поскольку последнее связано с необходимостью переориентации диполей на одной из границ раздела фаз. Возможность заметного изменения молекулярной компоненты расклинивающего давления при адсорбции ПАВ на межфазных поверхностях подтверждается результатами расчетов, выполненных уже сравнительно давно [551] в соответствии с микроскопической теорией молекулярного взаимодействия конденсированных сред и, более строго, в работе [550] на основе макроскопической теории. Такие изменения особенно значительны при значениях h порядка нескольких нанометров. [c.209]

    Полярные растворители растворяют полярные молекулярные вещества благодаря диполь-дипольному взаимодействию. Энергия, высвобождаемая при образовании диполь-дипольных связей между полярными молекулами растворителя и растворенного вещества, достаточна для разрыва межмолекулярных связей в молекулярных кристаллах (рис. 14-21). Например, лед растворим в жидком аммиаке, но не в бензоле потому, что NH3-полярная молекула, а gHj-неполярная. [c.623]

    ВРз и ЫРз должны образовывать молекулярные кристаллы. В КРз важнейшую роль играют диполь-дипольные и лондоновские (вандерваальсовы) силы. В ВРз, кроме того, должны проявляться льюисовы кислотно-основные взаимодействия вследствие того, что неподеленные пары электронов на атомах фтора одной молекулы частично дони-руются к атомам В других молекул, [c.528]

    Важными отличиями олефинов от парафинов с тем же числом углеродных атомов являются более высокая растворимость и способность сорбироваться, обусловленная наличием ненасыщенной углерод-углеродной связи. Олефииы лучше, чем парафины, адсорбируются твердыми веществами, поглощаются медноаммиачными растворами и растворяются в полярных жидкостях, таких как ацетон и фурфурол. Это позволяет выделять их сиециальными методами, из которых наиболее важное значение приобрела экстрактивная перегонка. Принцип ее состоит в том, что ири наличии третьего компонента, имеющего меньшую летучесть и способного к диполь-дипольному взаимодействию или образованию различных комплексов с олефинами, парциальное давление олефинов снижается в большей мере, чем у парафинов. В результате относительная летучесть парафинов, измеряемая отношением давлений насыщенных иаров u = PhlPv значительно возрастает (табл. 4). [c.34]

    Порядок приближения, в котором определяется тот или иной тип дальнодействующих сил, не связан с их важностью или величиной вклада. Так, например, определяемые во втором приближении силы могут быть более существенными по сравнению с силами, которые находятся в первом приближении. Во всяком случае, поскольку вносимое искажение достаточно мало, дальнодействующие силы могут быть скорректированы за счет учета свойств изолированных атомов или молекул. Таким образом, если распределение заряда не является сферически симметричным, то нейтральная молекула характеризуется статическим распределением заряда с ненулевыми мультипольными моментами (дипольным, квадрупольным, октапольным и т. д.). Тогда одна из составляющих дальнодействующих сил между двумя молекулами будет складываться из электростатического взаимодействия между соответствующими ненулевыми моментами. Другими словами, эта часть дальнодействующих сил определяется последовательным учетом диполь-дипольного, диполь-квад-рупольного, квадруполь-квадрупольного и т. д. взаимодействий. При таком типе взаимодействия заряженных оболочек возникают и другие, так называемые индуцированные силы, которые являются силами второго порядка. Например, дипольный момент одной молекулы будет искажать распределение заряда другой молекулы, силовое поле которой может быть описано с по- [c.194]

    Особенности поляризации в полярных средах связаны с диффуэно-стью двойного слоя, проявляющейся даже при дипольной структуре межфазной границы, индуцирующей вторичные диффузные слои в глубине обеих фаз. Учет поляризационных сил особенно важен при построении физической картины злектрокоагуляции, в технологии разделения систем с полярными средами, в том числе и очистки природньгх и сточных вод. Устойчивость дисперсной системы в электрическом поле зависит от знака и величины суммарной энергии взаимодействия, обусловленной энергией молекулярного притяжения, ионно-электростатической энергией отталкивания и энергией диполь-дипольного притяжения [43].  [c.15]

    Q п) — ориентационные вклады, например, вклад диполь дипольного взаимодействия, ( -1,и), диполь-ква/ рупольного взаимодействия, иц, (№, ), квадруноль квадрупольного взаимодействия, и,-у (0,6) и т. Здесь а и 6 означают дипольный и квадрупольны моменты молекул соответственно. [c.42]

    Возникновение водородных связей объясняют как резонансными, так и ди польными взаимодействиями. В большинстве случаев межмолекулярная н вну тримолекулярная вод ородные. связи возникают в результате диполь—дипольного [c.71]

    Диполь— дипольное уширение в спектрах ЭПР. Так как неспаренный электрон обладает магнитным моментом, он должен рассматриваться как магнитный диполь, который является источником магнитного поля. Таким образом, каждая парамагнитная частица находится не только во внешнем магнитном поле, но также и в локальном поле окружающих ее других парамагнитных частиц. Если парамагнитные частицы расположены в образце беспорядочно, то величины локальных полей для разных частиц различны. Обозначим среднюю величину разброса напряженности локальных полей АЯлок. Тогда условия резонанса (IX.15) начнут выполняться при напряженности внешнего магнитного поля Явн=Яо—АЯдок. При этом частицы, находящиеся в локальном поле +АЯлок, окажутся в суммарном поле  [c.235]

    Условие резонанса будет соблюдаться до Явн=Яо+АЯлок. Частицы, находящиеся в локальном поле —АЯлок, окажутся в суммарном поле Яо = Яви—+АЯлок. Таким образом, диполь — дипольное [c.235]

    Величина электронного диполь — диполыюго взаимодействия падает обратно иропорционально кубу расстояния. При расстоянии между парамагнитными центрами, большем чем 100 А, диполь— дипольное уширение практически ие наблюдается. [c.236]

    Диполь — дипольное анизотропное взаимодействие. Анизотропное сверхтонкое взаимодействие можно рассматривать как взаимодействие двух магнитных дииолей (частиц, обладающих магнитными моментами) — иеспаренного электрона и ядра. Кроме внешнего магнитного поля электрон оказывается также в магнитном иоле ядра. Величина этого дополнительного магнитного иоля в любой точке пространства равна [c.244]

    Важная информация может быть получена в результате исследования формы линии. Так, например, по эффектам диполь — дипольного уширения и обменного сужения можно судить о том, является ли пространственное распределение парамагнитных центров, статистически равномерным или они сгруппированы более плотными сгустками в определенных областях образца. Решение этих вопросов, а также оценка среднего расстояния между парамагнитными центрами важны для понимаиия кинетических особенностей радиационных и фотохимических процессов в твердой фазе, явлений адсорбции. По изменению формы линии может изучаться кинетика быстрых процессов, таких, как спиновый обмен между радикалами, реакции переноса электрона и др. Примером реакций последнего типа может служить реакция переноса электрона ог ион-радикала нафталина к молекуле нафталгша  [c.250]

    Существенно офаничивают гибкость макромолекул боковые заместители, способные образовывать диполь-дипольные контакты  [c.82]


Смотреть страницы где упоминается термин Диполь-дипольное: [c.127]    [c.166]    [c.209]    [c.43]    [c.37]    [c.254]    [c.376]    [c.198]    [c.252]    [c.187]    [c.184]    [c.27]    [c.98]   
Неорганическая химия Изд2 (2004) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие диполь-дипольное

Взаимодействие межмолекулярное диполь-дипольное

Влияние движений на ширину и форму лиАнализ неоднородноуширенных линий. Измерение диполь-дипольной ширины и констант неразрешенной сверхтонкой структуры

Время релаксации диполь-дипольной

Гамильтониан диполь-дипольного взаимодействия

Дальний диполь-дипольный перенос

Диполь

Диполь электрический дипольный момент

Диполь-дипольная релаксация

Диполь-дипольное взаимодействие амидных групп в спираля

Диполь-дипольное взаимодействие в релаксации ядер

Диполь-дипольное взаимодействие вандерваальсовы связи

Диполь-дипольное взаимодействие между амидными группами

Диполь-дипольное взаимодействие молекул

Диполь-дипольное взаимодействие прямое

Диполь-дипольное ориентационное

Диполь-дипольное ориентационное взаимодействие

Диполь-дипольное спин-спиновое

Диполь-дипольное спин-спиновое взаимодействие

Диполь-дипольное уширение

Диполь-дипольные взаимодействи

Диполь-дипольные взаимодействия влияние на забивание мембран

Диполь-дипольные взаимодействия и гипохромизм

Диполь-дипольные взаимодействия и перенос энергии

Диполь-дипольный комплекс

Дипольные моменты. Атомный диполь

Длина диполя, дипольный момент и полярность молекул

Индуцированные диполь-дипольные

Индуцированные диполь-дипольные взаимодействия

Ион-дипольное взаимодействие поправка на определенные размеры диполей

Константа диполь-дипольного взаимодействия

Конформационный анализ. Диполь-дипольные взаимодействия

О связи между ширинок блоховского спинового пакета и статическими диполь-дипольными взаимодействиями парамагнитных центров

Определение вкладов диполь-дипольного и сверхтонкого взаимодействий в ширину линии

Разность заселенности уровней с учетом диполь-дипольного взаимодействия

Релаксационные механизмы диполь-дипольный вклад

Релаксационные процессы, связанные с подвижностью диполь-дипольных поперечных связей

Релаксация через диполь-дипольное взаимодействие

Связь диполь-дипольная

Силы диполь-дипольные Двойные

Силы диполь-дипольные Двойные кристаллы Полярные связи Валентность Силы ван-дер-Ваальса

Силы диполь-дипольные Двойные связи Металлы Молекулярные

Силы диполь-дипольные в воде и льду

Силы диполь-дипольные в кристаллах

Силы диполь-дипольные в кристаллах галоидоводородов

Силы диполь-дипольные как функция расстояния

Силы диполь-дипольные, в веществах, содержащих водород

Спектральные параметры ЯМР диполь-дипольное взаимодействие

Сравнение с магнитным диполь-дипольным взаимодействием

Суммы дипольные диполь-дипольные

Суммы дипольные диполь-октупольные

Тензор диполь-дипольного в радикальной паре

Уширение линий диполь-дипольное

Энергия диполь-дипольного

Энергия диполь-дипольного взаимодействия



© 2025 chem21.info Реклама на сайте