Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы газ жидкость точка кипения

    При некоторой температуре однократного испарения, отвечающей так называемой точке конца кипения рассматриваемой системы, жидкая фаза полностью исчезает, испаряется последняя ее капля, и вся система в целом оказывается в паровой фазе. При этом состав паров в точности равен первоначальному составу а системы. Температура конца кипения ниже точки кипения ia компонента системы а, играющего в данном случае, роль высококипящего компонента. Точка является фигуративной точкой состояния системы в конце ее кипения, а точка Ri характеризует температуру и состав последней капли жидкости, равновесной с образовавшимися парами. Если при однократном испарении начальной системы поднять ее температуру выше то фигуративная точка Z,,, выражающая ее состояние, перейдет в область перегретого пара, расположенную на диаграмме равновесия выше изобарной кривой конденсации СЕ. [c.45]


    Аналогично протекают процессы испарения и конденсации е системах гомогенных азеотропов, образующих постоянно кипящие смеси с максимумом точки кипения. Здесь также, если состав перегоняемого раствора равен уе (фиг. 27), то выкипание системы будет происходить при постоянной температуре и неизменном составе жидкой и паровой фаз во все время испарения начального раствора, пока не выкипит его последняя капля. Также н при охлаждении насыщенного пара состава уе процесс конденсации будет протекать при неизменной температуре и постоянном составе образующейся жидкой и остаточной паровой фаз, пока не перейдет в жидкость последний пузырек пара. Если же начальный состав системы отступает в ту или другую сторону от азеотропического, то перегонка и конденсация протекают с изменением температуры и состава жидкой и паровой фаз. Так, если состав а меньше Уе, то процесс перегонки сопровождается повышением температуры и обогащением остаточной жидкой фазы компонентом ау, который на интервале концентраций 0<а<уе играет роль высококипящего. Если же состав а начальной системы больше азеотропического состава Уе, то в ходе перегонки, сопровождающейся постепенным повышением температуры, состав остатка прогрессивно обогащается компонентом а, который на интервале концентраций уе <я<Г1 играет роль высококипящего. [c.66]

    Под давлением насыщенных паров понимают давление, развиваемое парами при данной температуре в условиях равновесия с жидкостью. Температура, при которой давление насыщенных паров становится равным давлению в системе, называется температурой кипения вещества. Давление насыщенных паров нефти и нефтепродуктов до некоторой степени характеризует их испаряемость, наличие II пих легких компонентов, растворенных газов и т. д. Оно резко увеличивается с повышением температуры. При одной и той же температуре меньшим давлением насыщенных паров характеризуются более легкие нефтепродукты. [c.41]

    Имеется немало примеров того, что параметры фазового равновесия жидкость — пар для смесей играют важную роль при расчетах теплообмена. В то время как точка кипения для чистых компонентов при данном давлении фиксирована, для смеси такая ситуация не сохраняется. Диапазон температур, в котором имеет место кипение (или конденсация) при заданном давлении, зависит от состава смеси. На рис. 3 представлена диаграмма температура — давление типичной смеси легких углеводородов. Состав системы в целом, фазовое равновесие которой представлено на рис. 3, является постоянным. Составы паровой и жидкой фаз будут меняться от точки к точке. При анализе рис. 3 сразу видно различие в свойствах смеси и чистого вещества. Критическая температура чистого компонента определяется как температура, выше которой в веществе исчезает различие между жидкостью и паром. Очевидно, что такое определение неприменимо к исследуемой смеси. Здесь существует диапазон температур выше критической температуры, в котором жидкость некоторого состава может существовать одновременно и в равновесии с паром. Для чистого компонента критическое давление [c.166]


    При рассмотрении диаграмм равновесия однородных в жидкой фазе азеотропов было установлено, что в некоторых случаях равновесная температура кипения жидкого раствора компонентов, характеризующихся при обычных температурах свойством частичной растворимости, может оказаться выше их критической температуры растворения. Тогда система приобретает свойства положительного азеотропа, однородного в жидкой фазе, с минимумом точки кипения (см. фиг. 15). С другой стороны, там же указывалось, что при фракционировке подобного, однородного в жидкой фазе азеотропа, независимо от начального состава а исходной смеси, продуктами разделения будут либо один, либо другой компонент системы в практически чистом виде и азеотроп состава или пар, близко подходящий к нему по составу. При этом азеотроп обязательно будет верхним продуктом колонны, так как он кипит при более низкой температуре, чем оба компонента системы. Превзойти наверху колонны состав у азеотропа не представляется возможным, ибо, как известно, составы жидкости и пара в азеотропической смеси равны и неизменны, температура ее выкипания и конденсации постоянна и поэтому при достижении этой точки ректифицирующая работа колонны сейчас же прекращается. [c.133]

    Неограниченно растворимые жидкости, не подчиняющиеся закону Рауля, с положительными или отрицательными отклонениями и с максимумом или минимумом на кривой зависимости давления насыщенного пара от состава раствора. Диаграммы состояния, второй закон Коновалова. Для некоторых систем отклонения от закона Рауля могут быть так велики, что на кривой зависнмости общего давления от состава системы появляются точки, в которых давление пара больше, чем давление паров чистого более летучего компонента (при положительных отклонениях), или меньше, чем давление пара чистого менее летучего компонента (при отрицательных отклонениях). В результате на кривой общего давления появляются максимум или минимум (рис. 6.10 и 6.11). Поля, линии, точки на диаграммах имеют тот же смысл, что и на диаграммах для идеальных систем. Отличие заключается в том, что на диаграммах кипения для систем данного типа имеются азеотропные точки (точка С на рис. 6.11). К системам с азеотропами применим второй закон Коновалова  [c.98]

    Критическая температура, максимальная температура, при которой жидкость и пар могут сосуществовать в равновесии, а также кривая точек кипения характеризуют продукт пласта, добываемого при эксплуатации месторождения. Соотношение газ—жидкость, плотность жидкости, ее цвет, давление и температура пласта являются лишь общими параметрами и указателями системы и только характеристики фазовой оболочки позволяют определить тип жидкости. [c.27]

    На фиг. 21 представлена равновесная изобарная диаграмма кривых кипения и конденсации для азеотропа с максимумом температуры кипения при постоянном давлении. По оси абсцисс отложены составы компонента ю. При повышении температуры системы от точки кипения чистого компонента а, по мере того как жидкость обогащается содержанием компонента ш, координаты кривых кипения и конденсации системы возрастают, т. е. обе ветви этих кривых восходят кверху с некоторым переменным разрывом между ними. При этом, согласно первому закону Д. П. Коновалова, поскольку температура кипения системы с увеличением содержания компонента тю возрастает, следует, что прибавление компонента ш уменьшает суммарную упругость паров раствора и поэтому в паре его содержание должно быть меньше, чем в жидкости. Или, наоборот, пар должен быть богаче компонентом а, ибо его прибавление к раствору имеет [c.35]

    С другой стороны, при повышении температуры системы от точки кипения чистого компонента да, по мере того как жидкость обогащается содержанием компонента а, равновесные кривые кипения и конденсации также восходят кверху с некоторым переменным разрывом между ними. При этом, согласно первому закону Д. П. Коновалова, пар богаче компонентом да, чем равновесная ему жидкость, ибо прибавление последнего к раствору увеличивает его суммарную упругость паров и понижает температуру системы. [c.36]

    С], — свойство системы в точке кипения, когда система состоит из жидкости, находящейся в равновесии с бесконечно малым количеством газовой фазы насыщенная жидкость  [c.9]

    Технические условия. Для предотвращения аварий, вызываемых короблением, уменьшения влияния выделяющегося в поршневом двигателе внутреннего сгорания тепла на центровку подшипников, ход поршней и т. д. важно поддерживать температуру двигателя на каком-то определенном уровне. Кроме того, температура должна быть достаточно высокой, чтобы водяные пары в газах, проникающих из цилиндров в картер, не конденсировались, а удалялись через суфлер. В то же время температура не должна быть весьма большой, чтобы смазочное масло не портилось вследствие окисления или в результате крекинга. Для минимизации размеров радиатора желательно, чтобы система охлаждения работала при максимальной возможной температуре, чем обеспечивалась бы практически максимально достижимая разность температур между охлаждающей двигатель жидкостью и охлаждающим радиатор воздухом. С другой стороны, чтобы свести к минимуму потери при испарении охлаждающей жидкости, следует поддерживать температуру системы ниже точки кипения охлаждающей жидкости. Поэтому в системе должно поддерживаться некоторое давление, не превышающее, однако, значений, допустимых из условий надежности работы простых соединительных резиновых шлангов. Опыт показывает, что оптимальной с точки зрения указанных требований является температура в интервале 82—93° С. [c.217]


    Пусть дана систе 1а двух неограниченно растворимых друг в друге компонентов, образующих при некоторой концентрации Уе постоянно кипящую смесь с минимумом точки кипения, как. например, раствор бензола и этилового спирта, изобарная диаграмма равновесия которого приведена на фиг. 20. Если состав перегоняемого раствора равен уе. то выкипание системы будет происходить при постоянной температуре и неизменном составе жидкой и паровой фаз во все время испарения начального раствора, пока не выкипит его последняя капля. С другой стороны, если насыщенный пар состава уе охлаждать, то конденсация его также будет происходить при постоянной температуре и при неизменном составе образующейся жидкой и остаточной паровой фаз во все время конденсации, пока не перейдет в жидкость последний пузырек пара. Таким образом, ни испарение, ни конденсация в этом случае ни в какой степени не могут способствовать разделению компонентов системы, если ее начальный состав равен азеотропической концентрации уе  [c.63]

    Рассмотрим частично растворимые вещества, образующие двухслойные в жидкой фазе системы постоянно кипящих смесей, температура кипения которых занимает промежуточное положение между точками кипения чистых компонентов. Условия их парожидкостного равновесия отличаются тем, что на всем интервале концентраций, от О до 1, один из компонентов все время является низкокипящим, а другой — высококипящим. В связи с этим на всем интервале концентраций содержание низкокипящего компонента в паровой фазе всегда больше, чем в равновесной жидкости. Поэтому представляется целесообразным вести ректификацию подобных систем в одной полной ректификационной колонне, сверху которой в практически чистом виде отводится низкокипящий компонент а, а снизу — практически чистый высококинящий компонент ш. [c.313]

    Кривые кипения и конденсации касаются друг друга в экстремальной точке С, отвечающей максимуму точки кипения системы, что вполне согласуется со вторым законом Д. П. Коновалова, требующим равенства составов жидкости и пара в точках максимума или минимума температуры кипения системы. [c.36]

    Таким образом, для системы состава Уе равновесные пар п жидкость имеют одну и ту же концентрацию и перегонка системы должна происходить при постоянной температуре и постоянном составе. При фракционировке смеси с минимумом точки кипения в ректификационной колонне, состав конечных продуктов будет зависеть от того, по какую сторону от концентрации азеотропа располагается фигуративная точка начального состава разделяемой системы. Если состав а расположен в интервале концентраций 0<а<уе, то продуктами фракционировки будут практически чистый компонент а и азеотроп состава если же состав начальной системы попадет в интервал концентраци 3>е<я<1, то продуктами фракционировки будут практически чистый компонент да и азеотроп состава уе. В обоих случаях азеотроп будет верхним продуктом колонны, ибо кипит при более низкой температуре, чем оба компонента системы, [c.37]

    Однако, если начальная система неоднородна в жидкой фазе, и ее совокупный состав а заключен в интервале лд< а < хв, то явно нецелесообразно вводить подогретое до точки кипения сырье непосредственно в какое-нибудь сечение колонны, ибо, вследствие постоянства температуры перегонки двухслойной жидкости и неизменности составов жидких слоев и равновесного им пара, разделительное действие колонны будет сведено к нулю. [c.118]

    На фиг. 20 приведены равновесные изобарные кривые кипения и конденсации для однородного в жидкой фазе азеотропа с минимумом точки кипения, представленные в системе координат температура—состав . Состав ус, общий для пара и жидкости в азеотропической точке, разделяет равновесную диаграмму на две части, напоминающие обычные изобары веществ, характеризующихся монотонным изменением летучих свойств. Как указывалось ранее, состав азеотропической точки не является постоянным и меняется с изменением давления и поэтому напрашивается мысль о таком изменении внешнего давления, при котором состав, отвечающий экстремальному значению температуры, передвинулся бы в область концентраций, отвечающих практически приемлемой чистоте одного из компонентов системы. Тем самым, совершенно недопустимое для процесса ректификации касание кривых равновесия пара и жидкости передвигается к конечной точке интервала концентраций, оставляя простор для ведения процесса практически во всем интервале существования системы. [c.137]

    Чем больше разрыв между соответственными линиями пара и жидкости, тем легче произвести разделение компонентов системы. На фиг. 48 а показано, что, если температура системы становится равной точке кипения 4 бинарного азеотропа компонентов а и TW, то изобарно-изотермические линии "d и e f касаются друг друга в точке j/e на стороне aw базисного треугольника. [c.145]

    Согласно уравнению 330 состав пара, выделяемого системой нерастворимых жидкостей в точке кипения, сохраняет постоянное значение, независимо от состава жидкой гетерогенной массы, до тех пор, пока оба компонента присутствуют в системе. Из уравнения 330 следует  [c.161]

    Кривая точек кипения соответствует 100%-ному содержанию жидкости, кривая точек конденсации (точек росы) — отсутствию жидкости в системе. [c.27]

    Конструкция системы зависит от состава и скорости потока, поэтому для ее проектирования необходимы надежные данные о пласте и фазовом поведении содержащихся в нем продуктов. Давление и температура потока обычно снижаются по пути от забоя скважины до ее устья, который на фазовой диаграмме представлен линией, начинающейся при исходном давлении и температуре пласта и заканчивающейся при давлении и температуре первого сепаратора. Если конечная точка находится внутри фазовой оболочки, то двухфазный поток будет иметь место даже тогда, когда весь продукт в пласте находится в паровой фазе. Одной из основных задач планирования и конструирования является определение условий сепарации с целью оптимизации объема реализуемой жидкости. Для выполнения этой задачи нет необходимости строить полную фазовую диаграмму. Обычно достаточно определить критическую точку, точку кипения или точку росы при температуре пласта и фазовое равновесие в первом сепараторе Для этого необходим анализ проб из пласта. Данные о пласте и характеристика его продукции являются входными для системы [c.28]

    Вторая серия кривых, представленная на рис. 5.20, получена в той же системе координат на ней показаны потери давления в функции массового расхода для случаев, когда теплоноситель входит в трубу в виде жидкости, нагретой до точки кипения, так что никакого ее подогрева не происходит. Для этих вычислений было использовано соотношение (5.21), в котором [c.108]

    Из сказанного видно, что различные марки растворителя стоддард , обладающие одинаковыми точками кипения, могут проявлять себя по-разному. Некоторые из них несколько тяжелее других, но, что более важно, некоторые из них обладают большей способностью образовывать водные эмульсии. Существенность этого свойства особенно очевидна в случаях, когда применяется щелочная система осветления жидкости. Помимо этого, следует отметить, что действие одного и того же вида мыла, потребляемого при химической чистке, не одинаково в различных марках растворителя. К сожалению, приходится констатировать, что моющая способность растворителя, применяемого для химической чистки, [c.122]

    В точках кипения и система, находящаяся под атмосферным давлением, инвариантна. Непосредственный переход от состояния ее в одной из этих точек к состоянию в другой путем непрерывного изменения температуры при неизменном давлении невозможен. Такой переход может произойти только через неравновесные состояния системы. Поэтому он наблюдается крайне редко, лишь для систем, имеющих большую вязкость и склонных к значительным перегревам. Например, явление двойного кипения иногда наблюдается при выпаривании воды из концентрированных растворов солей в открытых резервуарах, обогреваемых топочными газами. Вначале раствор интенсивно кипит, затем кипение прекращается, концентрация раствора повышается вследствие медленного испарения воды, а затем жидкость вновь ненадолго закипает. Такой процесс, ведущийся с целью получить в значительной мере обезвоженное вещество, затвердевающее при охлаждении, обычно называют плавкой. [c.145]

    Для иллюстрации применения правила фаз к однокомпонентной системе рассмотрим приведенную на рис. 2.8 диаграмму удельный объем — давление для чистого пропана. Если произвольно зафиксировать температуру 71,1° С, то видно, что при существовании только газовой или только жидкой фазы давление может изменяться вдоль изотермической кривой, т. е. имеются две степени свободы. Однако, если произвольно зафиксировать давление и температуру, то возможно только одно состояние и удельный объем фазы имеет определенное значение. В двухфазной области фиксирование температуры 71,1° С связывает давление и удельные объемы каждой из двух фаз (на рис. 2.8 точки А и В). Точка А соответствует насыщенному газу (точка росы) [5], а точка В — насыщенной жидкости (точка кипения). С другой стороны, если произвольно фиксируется значение удельного объема насыщенной жидкости или насыщенного газа, то тем. самым фиксируются температура, давление и все остальные интенсивные свойства каждой из находящихся в равновесии фаз. [c.25]

    Недавно Грисвольд и Динвидди [14] опубликовали экспериментальные данные для равновесия жидкость — пар этой системы однако точки кипения приведены не были, и поэтому коэфициенты активности не могут быть вычислены непосредственно из этих данных. Сравнение экспериментально найденных составов -пара с вычисленными по коэфициентам активности с помощью рис.З приведено в табл. 4, составленной Богартом [5]. Совпадение здесь оказалось довольно хорошим. Вычисленная кривая состава пара в опытах со спиртами проходит несколько ниже, чем экспериментальная кривая, и поэтому расчетные величины для воды несколько высоки однако отклонения едва ли превышают величину от1ибки эксперимента. [c.140]

    На рис. 1.18 приведена изобарная равновесная диаграмма для второго типа частично растворимых веществ. Этот класс растворов характеризуется тем, что температура кипения трехфазной парожидкостной системы находится в промежутке между точками кипения ее чистых компонентов. Между составами ха и хв, отвечающими обеим сосуществующим жидким фазам А vi В, находящимся под заданным внешним давлением р при температуре кипения tg, проходит изобара жидкости, горизонталь tg = = onst. [c.40]

    Рассмотрим положительный азеотроп с минимальной точкой кипения (рис. П.9). Независимо от того, является ли исходная система насыщенной жидкостью или паром/>2, а также от того, меньше концентрация хт пли больше величины у постоянно кипящей смеси, перегонка такой системы протекает в основном так же, как и для бинарных систем с монотонными кривыми равновесия. Если х < Ус, то постепенное выкипание приводит к прогрес-спвному утяжелению жидкого остатка перегонки, который обогащается компонентом ш, играющим на участке концентраций от О до у роль высококипящего компонента (ВКК). Если же хь > Уе, то в ходе постепенного выкипания жидкий остаток перегонки прогрессивно обогащается компонентом а, который играет роль ВКК на участке концентраций от г/ ДО 1>0- [c.102]

    В двухфазных парожидких системах, обладающих, согласно правилу фаз. двумя степенями свободы, испарение однородной жидкой фазы сопровождается преимущественным выкипанием одного из компонентов, играющего роль низкокипящего и вследствие этого темперагура системы прогрессивно в ходе перегонки возрастает до точки кипения второго компонента, играющего роль высококипящего, согласно изобарным кривым кипения и конденсации. Поэтому при раздельно ,I испарении слоя А, для которого компонент да играет роль низкокипящего, температура жидкой фазы растет в ходе перегонки, а жидкость обогащается компонентом а до тех пор-лока не будет достиг, нута его точка кипения. Этот процесс характеризуется кривой кипения АС и кривой конденсации СЕ, сходящимися в одной точке С, отвечающей чистому компоненту а и его точке кипения 4. [c.27]

    На фиг. 16 представлена изобарная равновесная диаграмма для второго, неэвтектического класса частично растворимых веществ. Этот класс растворов характеризуется тем, что температура кипения трехфазной жидко-паровой системы является промежуточной между точками кипения обоих чистых ее компонентов. Между составами х и Хв, отвечающими обоим жидким сосуществующим фазам А я В, находящимся под заданным внешним давлением при своей температуре кипения 4, изобара жидкости представляет горизонталь 4 = onst. Для всех систем, у которых фигуративная точка совокупного состава а обоих жидких слоев попадает в интервал концентраций. га< а < Хв, происходит их расслоение на две жидкие сосуще- [c.28]

    Пусть фигуративная точка о представляет рассматриваемую начальную гомогенную жидкую фазу состава а и лежит на ветви АР кривой растворимости и поэтому вес второй жидкой фазы, ей равновесной, очевидно, равен нулю. Начальная система недогрета до точки кипения и для начала ее перегонки необходимо поднять температуру системы до значения, отвечаю-ш,его фигуративной точке 1, лежащей на изобарной кривой кипения АС жидкой фазы. В точке I жидкость приходит в насыщенное состояние и состав первого пузырька равновесного ей пара изобразится абсциссой точки V, представляющей точку пересечения изотермы начала кипения системы с изобарной, кривой конденсации СЕ. [c.44]

    Пусть дана система двух частично растворимых друг в друге веществ второго, неэвтектического типа, разделенная на два жидких слоя, находящихся в равновесии с их общим паром, при точке кипения под заданным постоянным внешним давлением. Из рассмотрения изобарных кривых кипения и конденсации этой системы, представленных на фиг. 16, можно заключить, что пока в системе присутствуют оба жидких слоя, как температура кипения, так и составы обоих жидких слоев и выделяемого пара останутся в ходе испарения неизменными. Единственно, по мере перегонки исходной двухфазной жидкости будет изменяться ее совокупный состав а, передвигаясь на горизонтальном участке АВ существования трехфазной равновесной системы по направлению к точке В до полного исчезновения фазы А состава ха, которое наступит в момент, когда совокупный состав жидкой фазы сравняется с составом лв слоя В. [c.53]

    Если начальная жидкая система неоднородна при своей точке кипения, то расход тепла, затрачиваемый на полное поглощение слоя А, отнесенный к единице веса исходной двухслойной жидкости, определится вертикальным отрез ком, заключенным между линией д дв теплосодержания гетерогенной жидкости и конодой ре дв. Так, для двухслойной жидкой системы, жмеющей совокупный состав обоих слоев а, расход тепла на [c.54]

    Пусть точка Ь на изобарной равновесной кривой жидкости АС является фигуративной точкой жидкой начальной системы, находящейся при температуре кипения (фиг. 16). Состав а этой системы заключен в интервале концентрации и < а < хд и поэтому в точке кипения она однородна в жидкой фазе. Состав первого микроскопического пузырька равновесного ей пара изобразится абсциссой точки V, представляющей точку пересечения изотермы 1 начала кипения исходной системы с изобарной кривой конденсации СЕ. Перегонку начнльной системы можно вести двумя способами—однократным и постепенным. [c.56]

    Совершенно другое явление имеет место в случае, когда состав исходной системы отступает в ту или другую сторону от азеотропической концентрации уе. Пусть, например, состав перегоняемого жидкого раствора находится в интервале концентраций 0<ас уе, и его фигуративная точка q лежит в области жидкости, недогретой до точки кипения (фиг. 26). Для того, чтобы началась перегонка исходного раствора необходимо  [c.63]

    Необходимым условием точного определения температуры кипения является хорошее перемешивание кипящей жидкости с образующимися паровыми пузырьками. Классическим прибором для определения температуры кипения является эбуллиометр Светославского [32]. На рис. 30 изображен дифференциальный эбуллиометр в полумикроисполнении. Его можно использовать не только для определения точки кипения, но также для контроля чистоты веществ и для изучения явления азеотропии в многокомпонентных системах. [c.55]

    То, что фазовые реакции в принципе возможны, видно на примере равновесия жидкость — пар в однокомпонентной системе. При постоянных Т а Р можно за счет подвода или отвода теплоты при одновременном изменении объема перевести любое количество жидкости в пар и пара в жидкость. То, что фазовые реакции возможны не при любых условиях, показано ка рис. 16, представляющем равновесное испарение бинарной системы при Р=сопз1, т. е. диаграмму кипения. В этом случае компонент 2 в жидкости всегда обладает более высокой концентрацией, чем в сосу- [c.146]

    На рис. VII. 2 представлена зависимость температуры кипения раствора от состава для той же идеальной системы СбНдВг— eHs l при атмосферном давлении. Эту диаграмму можно построить и теоретически, если известна температурная зависимость давления пара каждой из чистых жидкостей между их нормальными точками кипения. [c.89]

    Рассмотрим подробнее одну из диаграмм температура кипения — состав (рис. 10.5). Пусть сначала имеется жидкость определенного состава, характеризующаяся точкой N. Представим, что эта жидкость постепенно нагревается. Этому процессу соответствует перемещение фигуративной точки по вертикальной прямой NL. В точке лежащей на кривой жидкости, начинается переход части жидкости в пар. Состав пара при достигнутой температуре характеризуется точкой V, расположенной на кривой пара. При дальнейшем повышении температуры фигуративная точка суммарного состава всей смеси продолжает подниматься вверх по той же вертикали, а точки пара и жидкости смещаются соответственно по кривым пара и жидкости. Количество жидкости уменьшается, а количество пара возрастает. При температуре Т состав пара характеризуется точкой V i, состав жидкости — точкой L, суммарный состав смеси — точкой N, лежащей на ноде LiV i. Отношение количеств жидкости и пара обратно отношению отрезков ноды L Nt и jViV i. При температуре Ti жидкость полностью переходит в пар (последние капли жидкости имеют состав, отвечающий точке 2). Дальнейшее повышение температуры не изменяет фазового состояния системы. [c.195]

    Решение. Рассмотрим диаграмму состав — температура кипения (при Р = сопз1) для системы, имеющей азео-тропный состав. При дистилляции раствора состава а кипение начнется при температуре Гь а состав пара над этой системой при той же температуре будет отвечать точке б. При перегонке жидкость будет обогащаться компонентом В. В результате этого при многократной перегонке и конденсации пара из исходного раствора состава а можно получить раствор состава в (азеотропная смесь) и чистый компонент В. [c.188]


Смотреть страницы где упоминается термин Системы газ жидкость точка кипения: [c.398]    [c.216]    [c.166]    [c.110]    [c.91]    [c.398]    [c.229]    [c.164]   
Аналитическая химия Том 2 (2004) -- [ c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Кипение жидкости

Системы газ жидкость

Системы жидкость жидкость

Точка системы

Точки кипения



© 2024 chem21.info Реклама на сайте