Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучение радиочастотное

    Электронный парамагнитный резонанс представляет собой явление поглощения излучения микроволновой частоты молекулами, ионами или атомами, обладающими электронами с неспаренными спинами. Называют это явление по-разному электронный парамагнитный резонанс (ЭПР) , электронный спиновый резонанс и электронный магнитный резонанс . Все эти три термина эквивалентны и подчеркивают различные аспекты одного и того же явления. ЯМР и ЭПР характеризуются общими моментами, и это должно помочь понять суть метода ЭПР. В спектроскопии ЯМР два различных энергетических состояния (если I = 7г) возникают из-за различного расположения магнитных моментов относительно приложенного поля, а переходы между ними происходят в результате поглощения радиочастотного излучения. В ЭПР различные энергетические состояния обусловлены взаимодействием спинового момента неспаренного электрона (характеризуемого т = /2 для свободного электрона) с магнитным полем — так называемый электронный эффект Зеемана. Зеемановский гамильтониан, описывающий взаимодействие электрона с магнитным полем, дается выражением [c.5]


    ЯМР-спектроскопия основана на поглощении веществом, помещенным в сильное однородное магнитное поле, энергии радиочастотного излучения. Сущность этого физического метода исследования молекулярных структур излагается в специальных руководствах. [c.62]

    В эксперименте ядерного квадрупольного резонанса (ЯКР) для воздействия на переходы между различными ориентациями квадрупольного ядра в несферическом поле используют излучение радиочастотного диапазона. Эксперимент обычно проводят с использованием порошко- [c.264]

    ЯДЕРНЫЙ КВАДРУПОЛЬНЫЙ РЕЗОНАНС (ЯКР), явл ние резонансного поглощения или излучения радиочастотной [c.516]

    Магнит вызывает расщепление энергетических уровней магнитных ядер, т. е. создает необходимые условия для поглощения радиочастотного излучения. Радиочастотный генератор возбуждает магнитное поле, перпендикулярное к постоянному полю. При определенном соотношении этих полей наступает резонансное поглощение энергии, которое регистрируется радиочастотным детектором. Условия резонанса можно достичь либо изменением напряженности постоянного магнитного поля, либо изменением частоты генератора. Чаще используется второй принцип. [c.110]

    Теперь очевидно, что для наблюдения ЯМР помимо системы магнитных ядер необходимо иметь постоянный магнит, создающий поле Яо, источник радиочастотного поля Ну, чувствительный радиоприемник, позволяющий наблюдать поглощение или излучение радиочастотного поля, и регистрирующую аппаратуру. [c.281]

    Ядерный квадрупольный резонанс (ЯКР) — физический метод исследования, основанный на резонансном поглощении и (или) излучении радиочастотной электромагнитной энергии веществом. [c.377]

    Дополнительно к этим прямым измерениям разности энергий уровней квадруполя за счет поглощения энергии радиочастотного излучения та же информация может быть получена из тонкой структуры в чистом вращательном (микроволновом) спектре газа. Различные ядерные ориентации дают несколько различающиеся по величине моменты инерции, что приводит к тонкой структуре в микроволновом спектре. Могут быть проведены непосредственные измерения поглощения энергии ра- [c.265]

    Теперь рассмотрим эксперимент, в котором образец облучается радиочастотным излучением, соответствующим энергии квадрупольного перехода ядра В, после удаления образца из поля. Кроме того, предположим, что время между удалением образца из поля и повторным его внесением туда мало по сравнению с протонов. Эффект этого радиочастотного излучения заключается в рандомизации ядер В за счет индуцированных им квадрупольных переходов в спиновой системе В. При выполнении соответствующих условий относительно амплитуды приложенного радиочастотного излучения, отвечающих наличию локального поля на протоне, рандомизация спиновой системы В влияет на рандомизацию спиновой протонной системы. Это происходит следующим образом. Если образец удален из поля, то разность энергий между состояниями т= -Ь 1/2 и ш = — 1/2 (т.е. энергия перехода ядра водорода) снижается до нуля. В этом процессе наступит момент, когда разность [c.280]


    Микроволновые и радиочастотные спектры. В отличие от оптических спектральных приборов в радиоспектроскопе нет диспергирующего устройства, подобного призме или дифракционной решетке. Радиоспектроскоп — полностью электронный прибор очень высокой чувствительности. Его обязательными частями являются источник излучения, отражательный клистрон (область с V — = 1,5 — 0,5 см ), поглощающая ячейка, прибор для измерения частоты, детектор излучения СВЧ, усилитель детектированной мощности и индикатор. [c.150]

    В соответствии с принципами методов двойного резонанса техника этих методов, как видно из сказанного, имеет свои особенности в спектрометрах имеются два источника радиочастотного излучения (накачки и наблюдения) и две регистрирующие системы. Для проведения эксперимента необходима возможность перестройки частоты источников в широком диапазоне, т. е. сканирования по частоте, в отличие от обычных спектрометров, где осуществляется сканирование по полю. Существуют также приборы с импульсными источниками и с регистрацией методом электронного спинового эха. [c.82]

    ЭПР-спектроскопия используется для обнаружения, идентификации и определения количества свободных радикалов, обладающих, как известно, неспаренным электроном. Подобно методу ЯМР, она относится к радиоспектроскопическим методам и основана на особенностях поведения неспаренного электрона в магнитном поле. Как и указанные выше магнитные ядра, неспаренный электрон обладает магнитным моментом и при определенных условиях может поглощать кванты радиочастотного излучения, меняя при этом ориентацию в магнитном поле. [c.233]

    Экспериментальное оборудование в методе ЯМР в основном такое же, как и в методе ЭПР. Отличие состоит лишь в том, что микроволновые источник излучения и детектор заменяются на радиочастотные. [c.250]

    Сущность электронного парамагнитного резонанса заключается н том, что вещества, содержащие электроны с неспаренными спинами и находящиеся в постоянном магнитном поле, могут поглощать радиочастотное электромагнитное излучение. Явление ЭПР было открыто советским физиком Е. К. Завойским в 1944 г., который, изучив некоторые его закономерности, расширил область исследования парамагнитной релаксации. Теоретическая интерпретация опытов Завойского была осуществлена в 1945 г. Я. И. Френкелем. [c.203]

    Если уравнение (1.1) сопоставить с приведенными значениями разностей энергий для соседних энергетических уровней, то излучение в УФ-области спектра будет давать кванты света, достаточные, чтобы вызвать типичные электронные переходы. Например, длина волны 250 нм соответствует энергии кванта примерно 0,5-10 Дж, а моль таких квантов имеет энергию примерно 300 кДж, Энергия квантов электронного возбуждения одного и того же порядка, что и величина энергии диссоциации связи. Поэтому электронное возбуждение иногда сопровождается фотохимическим разложением. Однако в большинстве случаев разрыва химической связи не происходит, так как возбужденные молекулы возвращаются в основное состояние в результате различных фотофизических процессов, а в конденсированных средах, кроме того, взаимодействие между частицами приводит к быстрой передаче поглощенной энергии всему коллективу частиц. В некоторых молекулах электронные уровни расположены так близко друг от друга, что для электронного перехода достаточен видимый свет. Если уровни удалены друг от друга, то, чтобы вызвать эти переходы, необходимо УФ-излучение или даже рентгеновское. Инфракрасное излучение вызывает переходы между колебательными уровнями, радиочастотное излучение— между вращательными. [c.7]

    Насыщение. Как следует из уравнения Больцмана, система ядерных спинов в сильном однородном магнитном поле На при отсутствии радиочастотного поля содержит небольшой избыток ядер на нижнем энергетическом уровне. Под воздействием поля Н1 происходит переход ядер с нижнего энергетического уровня на верхний и в обратном порядке. Такие переходы называются стимулированными. При равной заселенности уровней = Л - а) не будет зафиксировано ни поглощение, ни излучение энергии, хотя переходы между уровнями в такой системе будут продолжаться. Такое состояние системы ядерных спинов называют насыщением. Это состояние может возникнуть при воздействии поля достаточно большой величины. После прекращения воздействия поля Я1 спиновая система возвращается в исходное состояние, которое отвечает распределению Больцмана, и ядерный магнитный резонанс можно наблюдать снова. Поэтому важно понимать, от каких факторов зависит насыщение системы ядерных спинов и какие процессы помогают системе выйти из состояния насыщения. [c.21]

    В оптической спектроскопии коэффициенты поглощения не зависят от интенсивности источника излучения. Это объясняется тем, что возбужденная система очень быстро (примерно за 10 с) возвращается в основное состояние, а освобожденная при этом энергия рассеивается в виде тепла. Напротив, в ЯМР-спектроскопии при большой напряженности вращающегося магнитного поля Н- (т. е. при большой амплитуде этого поля) может наблюдаться ослабление или даже полное исчезновение сигнала поглощения. Это явление (насыщение) является следствием изоляции ядер от окружающей их решетки ядра в отличие от электронов не могут отдать избыточную энергию путем соударений. Этот факт объясняет, почему в экспериментах по ядерному магнитному резонансу приходится использовать радиочастотное поле малой интенсивности. [c.21]


    На рис. 26, 27 изображен общий вид таких кривых, представленных в интегральной и дифференциальной формах. По оси ординат на рис. 26 отложена интенсивность поглощения I энергии радиочастотного излучения, по оси абсцисс — значения напряженности магнит-"7 ного поля Я (или частоты генератора радио- волн, если в ходе опыта постоянной поддер- [c.56]

    В возбужденные энергетические состояния поглощают электромагнитное излучение в радиочастотном диапазоне. Образец помещают между полюсами сильного магнита и регистрируют интенсивность прошедшего излучения, плавно меняя частоту падающего излучения. Так получают спектр ЯМР, содержащий отдельные сигналы поглощения. Положение этих сигналов определяется как разность частоты сигнала исследуемого вещества и стандартного соединения [чаще всего тетраметилсилана 51(СНз)4, деленная на рабочую частоту спектрометра (например, 100 МГц). Так как полученные величины очень малы (порядка Ю ), то по практическим соображениям их умножают на 10 . Таким образом приходят к величинам химических сдвигов б, выраженным в безразмерных единицах — миллионных долях (м.д.). Эти величины характеристичны для ядер отдельных изотопов, но зависят также от химического окружения ядер в молекуле. Структурно-эквивалентным ядрам соответствуют одинаковые значения б для протонов тетраметилсилана 6 полагается равным нулю. [c.26]

    Электронные спектры на самом деле являются электронно - колебательно - вращательными. Последние иногда называют полными молекулярными или полосатыми спектрами, так как около каждого электронного уровня имеется набор колебательных и вращательных уровней. На рис. 76 приведена схема электромагнитного спектра от радиочастотной области до у-излучения. [c.175]

    ГИЮ примерно 115 ккал. В некоторых молекулах электронные уровни расположены так близко друг от друга, что для электронного перехода достаточен видимый свет. Если уровни удалены друг от друга, то, чтобы вызвать эти переходы, необходимо излучение либо вакуумного УФ, либо даже рентгеновское. Инфракрасное излучение вызывает переходы между колебательными уровнями, радиочастотное излучение — между вращательными. [c.8]

    Исследуемое вещество атомизируют, распыляя его раствор в пламя газовой горелки. Через полученный пар обычно пропускают излучение, соответствующее атомному спектру определяемого элемента. В качестве источника излучения используют радиочастотные лампы. Световой поток, прошедший через поглощающий слой и монохроматор, выделяющий резонансную линию, регистрируют фотоэлектрически. В соответствии с законом Бугера мерой концентрации элемента служит поглощающая способность, которая зависит от строения атомов, агрегатного состояния вещества, его концентрации и температуры, толщины слоя, длины волны, поляризации падающего света и других факторов. По положению линий в спектре можно сделать вывод о строении атомов или идентифицировать их. Достоинствами метода являются высокая избирательность, низкие пределы обнаружения (10 —10 мкг/мл) и высокая воспроизводимость. [c.241]

    Известно много различных видов электромагнитных излучений рентгеновское излучение, ультрафиолетовое, видимое, инфракрасное, микроволновое и радиочастотное (рис. 15.1). Согласно волновой теории все виды излучения представляют собой колебания напряженности электрического и магнитных полей. [c.292]

    РАДИОПОГЛОЩАЮЩИЕ И РАДИОПРОЗРАЧНЫЕ МАТЕРИАЛЫ, неметаллич. материалы, обеспечивающие поглощение или пропускание электромагн. излучения радиочастотного диапазона (10 — 10 Гц) при мииим. его отражении. Распространяясь в объеме этих материалов, электромагн. излучение (ЭМИ) создает переменное электрич. поле, энергия к-рого преобразуется в тепловую энергию практически полностью-в радиопоглощающих и минимально-в радиопрозрачных материалах. [c.170]

    Диапазон длин волн лазерного излучения, пригодного для селективного фотовозбуждения веществ в ионном, атомарном или молекулярном состоянии, охватывает области спектра от ультрафиолетовой до дальней инфракрасной [139]. Кроме того, известны способы разделения изотопов при использовании различия в колебательновращательных спектрах радиочастотной области [140]. Радиочастотный вариант метода основан на известном явлении парамагнитного резонанса — избирательном поглощении электромагнитных волн парамагнитным веществом, находящемся в магнитном поле. Под действием магнитного поля уровни энергии молекул расщепляются на магнитные поду ровни (эффект Зеемана). При облучении молекул электромагнитным излучением радиочастотного диапазона с энергией, равной щагу магнитного расщепления для молекул с определенным изотопным составом, происходит резонансное поглощение излучения, вызывающее изменение их угловых моментов. При попадании далее смеси веществ в разделяющее магнитное поле наблюдается пространственное разделение молекул, соответствующих различным изотопам. Переход к более длинноволновому диапазону (радиочастотному и микроволновому) позволяет увеличить разрешающую способность благодаря большему различию в спектрах изотопов в этой области по сравнению с видимой или инфракрасной областями. [c.247]

    Киреев В. А., Курс физпческоИ химии, 3 изд.. М., 1975 Жуховицкий А. А., Шварцман Л. А., Физическая химия, 3 изд., М., 1976 Д а н п э л ь с Ф., ОлбертиР., Физическая химия, пер. с англ., М., 1978 Эткинс П.. Физическая химия, пер. с англ., т. 1—2, М., 1980. М. И. Темкин. ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, основаны на измерении физических (гл. обр. ядерных, атомных, молекулярных) характеристик, обусловливакяцих хим. индивидуальность определяемых компонентов. Такими характеристиками м. о. спектры испускания и поглощения электромагн. излучения (радиочастотные, ИК, видимые, УФ, рентгеновские и гамма-спектры), естеств. и искусств, радиоактивность, магн. св-ва и др. Наиб, широкое распространение получили методы спектрального анализа. [c.621]

    На этом явлении и основан метод ЭПР при постоянной частоте электромагнитного излучения и медленном изменении внешнего магнитного поля регистрируется изменение поглощаемой в образце мощности. В применяемых спектрометрах ЭПР автоматически регистрируется интенсивность поглощения или ее производная как функция напряженности статического магнитного поля. Обычно в спектрометрах ЭПР при напряженности Я = 3200Э (1Э (эрстед) = [1000/4п]А/м) явление резонанса наблюдается при частоте излучения ч 9000 мГц (>. = 3 см), т. е. в радиочастотной области (радиоспектроскопия). По интенсивности полосы в спектре ЭПР можно судить о концентрации частиц с неспаренными спинами электронов в веществе. [c.148]

    Метод ЯМР HinpoKo применяется дли исследования структуры органических соединений наряду с методами оптической спектроскопии. Поглонгеиие энергии радиочастотного излучения, которое используется в этом методе, связано с магнитными свойствами ядер. [c.97]

    Для получения спектров ЯМР образеи помещают в сильное однородное магнитное поле и действуют иа него радиочастотным излучением. Изменяя частоту генератора, возбуждающего магнитное поле, перпендикулярное к постоянному полю магнита, достигают [c.97]

    Если д и) - спектр исследуемого процесса, и) - несущая оптическая частота излучений, то биения между излучением с частотой Сс , которое играет роль опорного излучения, и излучением с частотой СО + и), являющимся сигнальным излучением, осуществляются на нулевой частоте, Зто гомодинный режим детектирова-нда. При гетеродинном режиме несущие частоты сигнального и опорного излучений сдвинуты на некоторый 1штервал . Биошя в этом случае происходят на промежуточной частоте < J , которая может быть выбрана в удобном для исследования радиочастотном диапазоне. [c.13]

    Избыток ядер иа иижнем энергетическом уровне используется для получения эф( екта ядерного магнитного резонанса. При воздействии на образец радиочастотным полем Н с постепенно меняющейся частотой ядра, находящиеся на наиболее низком энергетическом уровне, при строго определенно.м значении частоты начинают поглощать энергию и переходить на верхний уровень до установления в системе определенного равновесия. Эта частота называется резонансной. На практике, однако, предпочитают сохранять частоту излучения (60, 80, 100, 200 или 360 МГц) и изменять напряженность поля. [c.232]

    Еще одной ступенью в развитии исследований новейшей маг-нетохимии является изучение ее связей с квантовой радиофизикой. Дело в том, что другим важным следствием магнитного изотопного эффекта оказалось открытие принципиально нового свойства химических реакций — способности генерировать электромагнитное радиочастотное излучение или поле. В условиях самопроизвольной генерации продукты химической реакции обладают когерентной ядерной намагниченностью и ведут себя как молекулярные квантовые генераторы радиочастотного диапазона с химической накачкой, т. е. как химические мазеры. [c.164]

    Задача определения состава значительно упрощается при использовании инструментальных методов, позволяющих проводить измерение без изменения состояния системы. Основной метод, применяемый для этого, — поглощение или рассеяние электромагнитного излучения от радиочастотной до далекой ультрафиолетовой области. Например, за бромированием бензола можно легко следить, наблюдая спектрофотометрически (в видимой УФ- или ИК-областях) исчезновение брома и (или) бензола. [c.112]

    Если в статическом магнитном поле Н достигнуто равновесное состояние и допустимо пользование законами распределения классической статистики, то заселенности отдельных энергетических уровней определяются больцмановским множителем е-йРНт /А -Заселенности нижних энергетических уровней больше, чем верхних, поэтому, если включить переменное магнитное поле резонансной частоты, число актов поглощения превысит число актов вынужденного излучения, в результате вещество будет поглощать энергию радиочастотного поля. Таки.м образом, в парамагнетике идут два противоположных процесса радиочастотное поле выравнивает заселенности различных магнитных уровней, а внутренние взаимодействия стремятся восстановить больцмановское распределение, переводя поглощенную энергию радиочастотного поля в тепло. [c.717]


Смотреть страницы где упоминается термин Излучение радиочастотное: [c.621]    [c.119]    [c.6]    [c.165]    [c.265]    [c.148]    [c.78]    [c.148]    [c.330]    [c.77]    [c.414]   
История органической химии (1976) -- [ c.275 ]

История органической химии (1976) -- [ c.275 ]




ПОИСК







© 2025 chem21.info Реклама на сайте