Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптические переходы

    Известно, что оптические переходы возможны не между любыми уровнями. В нашем случае разрешенными будут пе- [c.105]

    Работа некоторых весьма важных газовых лазеров основана на механизме возбуждения в процессе межмолекулярного переноса энергии. Например, в гелий-неоновом лазере электрический разряд проходит через смесь, содержащую около 10% Ые в Не. Столкновения с электронами от разряда вначале заселяют первые возбужденные триплетные и синглетные состояния Не, как показано на рис. 5.6. Оптические переходы от этих состояний к основным состояниям запрещены и поэтому являются метастабильными и долгоживущими. Эти два состояния близко резонируют с двумя возбужденными состояниями N0 (обозначенными на рисунке 23 и 35), и столкновительный обмен энергией приводит к образованию возбужденного неона в состоянии 5. Имеются также низколежащие состояния Р, для которых резонансное возбуждение невозможно, так что осуще- [c.144]


    Значение и знак величин а и Де изменяются при сканировании длин волн Я. Зависимость оптического вращения а от X называется кривой дисперсии оптического вращения, зависимость дихроичного поглощения Де от к — спектром кругового дихроизма. Для отдельно выделенного оптического перехода вид кривых ДОВ и КД очень сходен с соответствующими зависимостями п и е от X. Однако в зависимости от знаков разностей и е —Вг при > макс кри- [c.36]

    Если невозможно достичь области оптически активного хромофора, то метод КД неприменим, в то время как анализ плавных кривых ДОВ в доступной области дает полезную информацию о структуре молекулы. Однако эту информацию трудно однозначно оценить и отнести к определенному оптическому переходу. [c.38]

    Оптические переходы между состояниями активатора и краями валентной зоны — и зоной проводимости — 2. по Громову, выражаются следующими уравнениями. При активации неорганических соединений металлами [c.126]

    СОСТОЯНИЙ в окрестности точки пересечения (см. разд. 2.7). Правила отбора для безызлучательных переходов получаются так же, как и в случае оптических переходов. Они таковы  [c.54]

    Между различными уровнями электрона в магнитном поле возможны оптические переходы. Так как правило отбора разрушает переходы, при которых ДМ = то [c.532]

    Изучение оптических переходов связано с расчетом возбужденных состояний молекул, который в силу его сложности мало освоен. Поэтому можно считать, что теория оптических свойств молекул только создается. Мы познакомим, читателя с некоторыми квантовохимическими подходами к решению спектроскопических задач, не затрагивая по существу всего того многообразия результатов Экспериментальных исследований, о которых упоминалось выше. [c.130]

    Правила отбора для оптических переходов [c.39]

    Эффективность пересечения двух электронных состояний может быть настолько низкой, что в этом случае предиссоциация не приводит к уменьшению интенсивности полос испускания. Даже в отсутствие таких процессов, как физическое тушение, излучательные потери приводят к тому, что большинство возбужденных частиц не претерпевает химических превращений. Такая низкая эффективность внутримолекулярного обмена энергией для двух пересекающихся состояний обычно возникает при действии запрещения безызлучательного перехода. Существуют, однако, ситуации, когда эффективность безызлучательного перехода зависит от внешних условий. Столкновения с другими частицами, наличие электрического или магнитного поля могут приводить к снятию запрета на оптические переходы. Подобное явное нарушение правил отбора наблюдается и для безызлучательных переходов — правила действуют лишь для невозмущенных молекул. Увеличение вероятности пересечения соответствующих состояний приводит К увеличению относительного вклада предиссоциации, так как молекула возмущена влиянием внешних воздействий. Предиссоциация, эффективно протекающая лишь при наличии некоторого внешнего возмущения, называется индуцированной. [c.54]


    Различают два типа оптических переходов переходы с участием лишь одного фотона (прямые переходы) и переходы, в которых [c.417]

    Окраска ионов переходных металлов — результат запрещенных по симметрии оптических переходов электронов на атом металла наличие запрета приводит к относительно слабым поглощениям (например, поглощение, вызывающее синий цвет свободного иона Сц2+, имеет 10 при Я = 810 нм). Однако [c.71]

    Внутримолекулярные изменения вероятностей переходов также имеют значение. В табл. 4.3 даны значения Ар, kt и фр/фг для нафталина и некоторых его галогенпроизводных. Замещение одним атомом иода приводит к возрастанию вероятности оптического перехода (приблизительно в 10 раз) и к увеличению выхода IS Более того, рост фр/ф1 происходит главным образом вследствие возрастания выхода IS в замещенных молекулах. Аналогичные эффекты наблюдаются при замещении молекул и во многих других соединениях. Действительно, основное проявление влияния замещения на фотохимию [c.107]

    Для изучения возбужденных образцов может быть использовано оптическое излучение, поскольку оптический переход в нижнее электронное состояние может происходить с достаточной интенсивностью. Поэтому флуоресценция или хемилюминесценция возбужденных соединений хорошо подходят для такого рода исследований, хотя более слабое излучение фосфоресценции ограничивает его применимость для изучения триплетных состояний органических молекул, особенно в экспериментах с временным разрешением. [c.196]

    Так как оператор V нечетный, первый интеграл в выражении (738) обращается в нуль, если, только функции и щ не имеют противоположную симметрию относительно координат. Эта ситуация аналогична той, которая возникает в оптике [7 ]. Там одно из правил отбора для оптических переходов гласит, что эти два состояния должны обладать противоположной четностью. Поэтому здесь принято использовать спектроскопическую терминологию и говорить о переходах разрешенных, если первый интеграл в выра-418 [c.418]

    Под действием излучения частоты йсо = = 83 — начнутся переходы между состояниями 1 и 3, если предположить, что эти оптические переходы разрешенные (см. рис. 181, б ). Если считать интенсивность излучения достаточно большой и забыть на мгновенье о существовании состояния 2, то система быстро достигнет распределения, при котором N1 = N3 = N 2. [c.436]

    ААС основана па поглощении излучения свободными атомами, обычно в основном состоянии [8.2-4-8.2-14]. При выборе длины волны для данного элемента, которая соответствует оптическому переходу атомов из основного состояния в возбужденное, поглощение излучения приводит к уменьшению заселенности основного состояния. Величина поглощения связана с концентрацией атомов в основном состоянии и, следовательно, с концентрацией элемента. Измеряя количество поглощенного излучения, можно провести количественное определение элемента. [c.39]

    Электронная конфигурация и возможные оптические переходы описаны в разд. 8.1.2. Оптические переходы, используемые в ААС, обычно осуществляют- [c.39]

    Проведенные расчеты показывают, что этот новый материал является полупроводником с запрещенной зоной с прямыми оптическими переходами, подобный арсениду галлия. В кристаллической структуре все его атомы занимают определенные положения. Однако в отличие от арсенида галлия атомы бакиболов колеблются хаотично. Это беспорядочное поведение в определенной степени делает их похожими на аморфный кремний - компонент недорогих солнечных батарей. Специфический беспорядок в упорядоченной структуре С50 еще предстоит исследовать, но ожидается, что на нем может быть основан соверщенно новый тип полупроводников. [c.152]

    Из теории вз 1им0действия частиц при их соударопиях может быть по-jty4eHa наблюдаемая на опыте связь между вероятностью возбуждения при электронном ударе и вероятностью соответствующего оптического перехода. Вычисляя сечение возбуждения квантового перехода i / ударом электрона в борновском приближении, можно представить величину Oij в виде ряда, каждый из членов которого оказывается соответственно пропорциональным квадрату матричного элемепта [88] [c.175]

    При использовании лазерного излучения большой мощности может возникнуть явлепне оптического насыщения перехода, т. е. явление, когда число переходов в атоме с нижнего уровня на возбужденный под действием квантов света источника возбуждения окажется равным числу переходов с возбужденного на нижний, возникающих как за счет спонтан]1ого излучения, так и за счет стимулированного излучения с возбужденного уровня. Таким образом осуществляется максимально возможное число оптических переходов между двумя энергетическими уровнями. Дальнейшее увеличение мощности излучения источника света не мо- [c.135]


    При расчете молекул, содержащих несколько атомов, решение векового уравнения позволяет найти энергетические уровни электронов, разности которых приблизительно определяют частоту электронного спектра. Число таких энергетических уровней сравнительно велико. Если учесть, что оптические переходы возможны не только между основным и возбужденными, но и между двумя возбужденными состояниями, можно ожидать появления большого числа спектральных линий. Однако в спектре даже сравнительно сложных молекул (бензол, хинолин и т. п.) наблюдается всего несколько линий, характерных для -соответствующего я-электронного фрагмента. Например, в спектре бензола отмечается три линии вблизи частоты 3600 см- одна интенсивная и две слабые. Причина этого заключается в том, что далеко не между всеми энергетическими уровнями оптический переход разрешен. Как известно из теории квантовых переходов под влиянием световой волны, вероятность дипольного перехода между уровнями Ея и Ем пропорциональна матричному элементу Окм= < к1г1 м>, значение которого при наличии разной пространственной симметрии функций и Ч м становится равным нулю (см. 7 гл. IV). Если симметрия молекулы нарушается (например, вследствие движения ядер, влияния полей, действующих [c.135]

    Исследованы оптические и электрохимические свойства комплексов [Ы(Ви)4][Р1(1ру)С12], М(1ру)С1(В1) (М = Р1(П), В1 = р2, Ьр, с1рр М = Рс1(Т1), В1 = Ьр), [М(Ьру)2С1(В1)]ВР4 (М = Оз(И), В1 = рг, Ьр, М = аи(П), В1 = (1рр) и биядерных систем на их основе [Р1(1ру)С1]2((л-В1) (В1= Ьр, <1рр), С1(1ру)Р1(й-Ьр)Рс1(1ру)С1, [С1(1ру)Р1( а-В1)08(Ьру)2С1]ВР4 (В1 = рг, Ьр), [С1(1ру)Р1(ц-с1рр)Ки(Ьру)2С1]Вр4 (1ру депротонированная форма 2-(2 -тиенил)пиридина, рг - пиразин, Ьр - 4,4 -бипиридил, с1рр - транс-1,2-бис-(дифенилфосфин)этилен, Ьру - 2,2 -бипиридил). Установлена природа низших спин-разрешенных и спин-запрещенных оптических переходов и ре-докс орбиталей, определяющих характер электрохимических процессов их восстановления и окисления. Получены количественные параметры, характеризующие процессы деградации энергии фотовозбуждения и переноса электрона. [c.67]

    В молекулярной спектроскопии известно правило интеркомбинационного запрета, согласно которому оптические переходы между электронными состояниями разной мультиплетности запрешены. Хотя экспериментально спектральные линии, соответствуюшие таким переходам, все же наблюдаются, их интенсивность обычно значительно меньше интенсивности линий, образованных переходами между уровнями одинаковой мультиплетности (например, синглет-синглет 8—15 или триплет-триплет Т—Т"). С теоретической точки зрения, качественная сторона этого вопроса очевидна. Операторы, приводящие к изменению мультиплетности (т. е. содержащие спиновые операторы), входят в гамильтониан с небольшими множителями, значительно меньшими, чем множители операторов, определяющих изменение координатной части волновой функции. [c.137]

    Значение и знак величин а и Ае изменяются при сканировании длин волн к. Зависимость оптического вращения а от Я. называется кривой дисперсии оптического вращения, завдасимость дихроичного поглощения Ае от X — спектром кругового дихроизма. Для отдельно выделенного оптического перехода вид кривых ДОВ и КД очень сходен с соответствующими зависимостями и и е от Я. Однако в зависимости от знаков разностей щ—Пт и ег—Ът при Я>Я,мако кривые КД могут быть как положительными (рис. 21, а), так и отрицательными (рис. 21, 6), а кривые ДОВ могут иметь при Я>Ямакс или положительный максимум, переходящий в отрицательный минимум при ЖХмакс (рис. 21, а), или наоборот (рис. 21, б). На 36 [c.36]

    Мы должны теперь дать некоторые объяснения природы за-преш,енного триплет-синглетного излучения. В разд. 2.6 мы полагали, что электрические дипольные переходы могут иметь место и при Д8 0, если S не дает хорошего описания системы. Оптические переходы между триплетными и синглетными состояниями могут наблюдаться, если триплет не является чистым, а содержит синглетную составляющую, и наоборот. В органических молекулах перемешивание синглетных и триплетных состояний происходит за счет слабого спин-орби-тального взаимодействия. Так как спин-орбитальное взаимодействие между состояниями одной и той же конфигурации запрещено, то, например, состояние (я, я ) может перемешаться с состояниями (п, я ) и .,(о, я ) и не может с состоянием (я, л ). Аналогично состояние (п, л ) перемешивается с состоянием (я, я ). Поскольку радиационный переход из состояния (я, я ) в основное состояние полностью разрешен, тогда как переход из (п, я ) в общем случае частично запрещен, следовательно, переход Т(п, я )->-5о является более разрешенным, чем (я, я )- 5о. Таким образом, относительная вероятность триплет-синглетных переходов из состояний (п, я ) и (я, я ) отличается от той, что наблюдается при синглет-син-глетных переходах. Экспериментальные исследования естественных времен жизни флуоресценции находятся в соответствии с этими предсказаниями в ароматических углеводородах, имеющих нижнее триплетное состояние (я, я ), радиационное время жизни равно приблизительно 1—10 с, в то время как у карбонильных соединений нижним триплетным состоянием является уровень (л, я ), характерное время жизни которого обычно равно 10 2—10- с. [c.100]

    Скорость запрещенных по спину переходов может быть существенно изменена под влиянием внешнего окружения. Такое воздействие можно наблюдать при добавлении парамагнитных молекул в растворитель. Хотя О2 и N0 уменьшают выход фосфоресценции вследствие своего участия в эффективном бимолекулярном тушении, они вызывают одновременно рост скоростей оптического перехода и IS . Поглощение при переходе T l- -So также возрастает по интенсивности в тех случаях, когда присутствуют парамагнитные соединения. Например, поглощение при переходе Ti- -So в бензоле ( 310—350 нм) практически исчезает, когда удаляются последние следы кислорода. Наиболее драматическую картину поглощения 7- -S представляют растворы пирена, которые в обычном состоянии бесцветны, но приобретают насыщенный красный цвет в присутствии кислорода при высоком давлении. Тяжелые атомы в своем окружении способствуют также росту вероятности излучательных и безызлучательных переходов путем индуцирования заметного спин-орбитального взаимодействия в растворе. Так, растворы антрацена и некоторых его производных начинают слабее флуоресцировать при добавлении бромбензола, тогда как интенсивность триплет-триплетного поглощения возрастает в результате усиления IS Si T i. Как мы отмечали ранее, эти процессы наиболее значительны для переходов, включающих возбужденные состояния (л, л ). Спин-орбитальное взаимодействие всегда пренебрежимо мало в симметричных ароматических соединениях, и именно здесь изменение скоростей переходов под воздействием окружения наиболее заметно. В то же время сильное спин-орбитальное взаимодействие всегда существует в состояниях (п, л ), и в этом случае воздействие внешнего возмущения более слабое. Эти эффекты наблюдаются как в твердых, так и в жидких растворах. Например, фосфоресцент-ное время жизни в бензоле, растворенном в стеклообразной матрице при 4,2 К, уменьшается от 16 с в СН4 или Дг до 1 с в Кг и до 0,07 с в Хе отношение <рр/ф1 возрастает, и все процессы IS Si T i, T,- So+hv и Ti So протекают быстрее в растворителе с большей атомной массой. [c.107]

    Согласно правилу отбора спина А5 = 0, дальнодействующий кулоновский перенос энергии невозможен для любых процессов, протекающих с изменениями мультиплетности, и поэтому дальнодействующий триплет-триплетный перенос энергии должен быть исключен. Однако, поскольку спин-орбитальное взаимодействие допускает электрические дипольные оптические переходы с Д8 0 в сложных молекулах, кулоновский перенос может происходить по с1с1-механизму. Похоже, что этот перенос является более медленным, чем обменные процессы, в которых переходы для донора и акцептора полностью разрешены, но, так как реальное излучательное время жизни триплетных состояний также велико, дальнодействующий перенос энергии может все еще иметь значение наряду с излучением. Отсюда следует, что дальнодействующее взаимодействие, видимо, осуществляется только в системах, в которых тушение или интеркомбинационная конверсия не являются основными процессами потери три-плетпой энергии донора. Интересно, что процесс типа [c.131]

    Так как энергия оптических переходов увеличивается с ростом КЧ, а дисперсия зависит от числа валентных электронов Л е и величины отрицательных зарядов на анионах 2аи (дающих основной вклад в поляризуемость и дисперсию кристалла), то Еа долл на зависеть от всех перечисленных факторов (см. предыдущую страницу). Уэмил и Ди Доменико экспериментально нашли, что [c.271]

    Аналогичная картина имеетместо и в примесных полупроводниках. Разнообразные оптические переходы в примесных атомах, индуцируемые падающим излучением подходящей частоты, приводят к образованию целого спектра примесного поглощения [4]. [c.424]

    Установлено, что независимо от природы В1-лиганда и металла низшим спин-разрешенным оптическим переходом для координационно-ненасыщенных [М(1ру)С1(В1)] комплексов является переход с переносом заряда метал-циклометал-лирующий лиганд (с1-л )-типа. Изменение природы металла Р1->Рё приводит к гип-сохромному сдвигу низшей полосы поглощения (с1-я )-типа в результате дестабилизации с1-орбиталей металла. Электронные спектры гомо- и гетероядерных комплексов в основном определяются суперпозицией полос поглощения, образующих их металлокомплексных фрагментов, что свидетельствует о слабом взаимодействии между ними и позволяет рассматривать [М(1ру)С1(В1)] (М= Р1(11), Р<1(11)) и [М (Ьру)2С1(В1)] (М = Яи(П), 08(11)) в качестве хромофорных структурных единиц . Показано, что эффективность взаимодействия между металлокомплексными фрагментами в биядерных системах уменьшается как с увеличением протяженности мостикового В1-лиганда, так и при различной симметрии лигандгюго окружения металлофрагментов. [c.56]

Рис. 8.1-1. Примеры основных и возбужденных состояний атома (внизу) и иона (на-верху) А1 энергии возбуждения Евозб (см ) отсчитываются от основного состояния атома либо иона показаны возможные оптические переходы (длины волн оптических переходов даны в нм). Рис. 8.1-1. <a href="/info/351649">Примеры основных</a> и <a href="/info/671965">возбужденных состояний</a> атома (внизу) и иона (на-верху) А1 <a href="/info/12440">энергии возбуждения</a> Евозб (см ) отсчитываются от <a href="/info/9285">основного состояния</a> атома либо иона показаны возможные <a href="/info/476274">оптические переходы</a> (<a href="/info/972477">длины волн оптических</a> переходов даны в нм).
    Продемонстрирована применимость моде ш юкализованны>с молекулярных орбиталей для совместной интерпретации природы низших спин-разрешенных оптических переходов (<1-7Г )-типа, наблюдаемых в электронных спектрах поглощения, и характера электрохимических процессов - лиганд-центрированного восстановления и ме-тал-центрированного окисления комплексов. Показано, что как в моноядерных, так и биядерных системах оптические и электрохимические свойства определяются природой М(С Ы) -металлокомплексных фрагментов в их составе. При объединении M( N) - и М (С Ы) -фрагментов в биядерные [М(С Ы)(ц-СЫ)М (С Ы)] системы они сохраняют свои оптические свойства и электрохимические свойства и выступают в качестве в значительной степени изолированных хромофорных и электроактивных сфуктурных единиц. [c.62]

    Подкласс ионно-молекулярных кристаллов проявляет преимущественно ионную связь между катионом и сложным анионом, в качестве которого выступает кислотный остаток кислородсодержащих кислот Х0 , и ковалентную связь внутри последнего. Такие анионы обладают характерным набором внутриионных колебаний и оптических переходов, практически одинаковых как в растворах, так и в кристаллах. Указанные кристаллы имеют первую валентную зону и первую зону проводимости, состоящую из, соответственно, ВЗМО и НСМО аниона, вследствие чего химические последствия действия излучения наблюдаются в основном в анионной подрешетке[1]. [c.97]


Смотреть страницы где упоминается термин Оптические переходы: [c.122]    [c.175]    [c.175]    [c.177]    [c.136]    [c.54]    [c.125]    [c.131]    [c.419]    [c.70]    [c.130]    [c.502]    [c.78]    [c.13]   
Структура и симметрия кристаллов (0) -- [ c.264 ]




ПОИСК







© 2025 chem21.info Реклама на сайте