Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрогенизация

    Примером адиабатических систем являются реакционные камеры процессов термического крекинга деструктивной гидрогенизации, каталитического крекинга с движущимся катализатором, прямой гидратации этилена, дегидрирования бутиленов и др. [c.263]

    Деструктивная гидрогенизация средних сел.................. [c.271]

    Если к соединению с двойной связью добавить при определенных условиях недостающее количество водорода, то его атомы присоединяются к углероду по месту двойной связи. Это значит, что одна из двух связей, соединявших атомы углерода, разорвется, и каждый атом присоединит к освободившейся связи по атому водорода. Другими словами, непредельный углеводород превратится в предельный. Дальше я объясню, почему такая реакция — ее называют реакцией гидрогенизации — бывает очень важна для домашних хозяек. [c.39]


    Такое прогоркание, естественно, не грозит жирам, которые не содержат двойных связей. Поэтому кулинарные жиры, полученные путем гидрогенизации растительных масел, могут долгое время храниться при комнатной температуре, не портясь. [c.201]

    Качество дистиллятов другого происхождения и состава может быть улучшено предварительной их очисткой методом гидрогенизации под высоким давлением. Этот процесс лучше всего проводить в присут- [c.13]

    Указанные катализаторы совершенно нечувствительны к отравляющему действию серы, вследствие чего их можно применять даже при гидрогенизации высокосернистых нефтяных фракций. При длительной работе они требуют даже добавки некоторого количества сероводорода для дополнительного осернения. В противном случае при температуре [c.14]

    Нефтяные дистилляты, из которых даже гидроочисткой не удается получить пригодного для химической переработки материала, дополнительно облагораживают, подвергая перед гидрогенизацией исходную дистиллятную фракцию экстракции избирательными растворителями, например жидким сернистым ангидридом (процесс Эделеану). При этом ароматические компоненты переходят в жидкий сернистый ангидрид, в котором парафиновые углеводороды не растворяются. [c.15]

    Источником сравнительно больших количеств низкомолекулярных парафиновых углеводородов являются, кроме нефти, также газообразные продукты гидрогенизации бурых и каменных угле . [c.15]

    Олефины, направляемые на химическую переработку, за немногими исключениями (например, хлорирование пропилена в хлористый аллил для дальнейшего синтеза глицерина или полимеризация этилена для производства полиэтилена и др.), могут содержать значительные количества парафиновых компонентов. При химической переработке парафиновых углеводородов, наоборот, присутствия олефинов не допускается. Поэтому при применении крекинг-1 азов в качестве исходного сырья олефины необходимо предварительно или насытить путем каталитической гидрогенизации (к тому же крекинг-газы одновременно содержат заметные количества водорода), или отделить от парафинов при помощи химических процессов. После этого парафиновые углеводороды могут быть использованы для химической переработки. [c.16]

    Таким образом, сырьем для получения низкомолекулярных парафиновых углеводородов являются природные газы, отходящие газы нефтеперерабатывающих установок, газообразные продукты гидрогенизации каменного или бурого угля. Значительные количества твердого парафина можно получать из нефти или бурого угля. Нефть может служить исходным сырьем также и для получения углеводородов среднего молекулярного веса, содержащих б—20 углеродных атомов в молекуле. Парафиновые углеводороды нормального строения такого молекулярного веса можно выделить в виде продуктов присоединения при обработке соответствующих фракций мочевиной. [c.16]


    В странах, где имеются нефтяные месторождения, низкомолекулярные, газообразные при нормальных условиях парафиновые углеводороды можно получать непосредственно из природного газа. В странах с высокоразвитой промышленностью и, в частности, в Германии источником газообразных парафиновых углеводородов являются низкомолекулярные продукты гидрогенизации бурых и каменных углей и каменноугольной смолы. [c.17]

    Б. Газообразные парафиновые углеводороды процесса гидрогенизации [c.31]

    При получении из бурого угля 100 000 т бензина образуется около 18 000 т сжиженных газов (бутан и пропан), которые можно использовать для химической переработки, в том числе около 10 000 т пропана (примерно 83% от потенциала) и 8000 т бутанов (приблизительно поровну н-бутапа и изобутана). Фактически выход бутана составляет в среднем 13 000 г, т. е. около 91% от потенциала, но из них 5000 г используют в качестве компонента для добавки к товарным бензинам. В зимний период для поддержания нормированной упругости паров бензина с учетом низких температур воздуха к товарному бензину добавляют больше бутана, чем летом. Наряду с сжиженными газами получают также около 4000 т этана, что соответствует 60% от потенциала. Остальной этан и весь метан находятся, как будет показано ниже, в бедных газах гидрогенизации. [c.31]

    Этан образуется главным образом при жидкофазной гидрогенизации. Практически полное отсутствие ненасыщенных алифатических углеводородов объясняется характером процесса. Вследствие высокого парциального давления водорода и высокой гидрирующей активности катализатора олефины, образующиеся в результате крекинга, сразу насыщаются. [c.32]

    Источники образования газов промышленного значения при гидрогенизации каменных углей весьма разнообразны. Столь же различен и состав этих газов. Все выделяющиеся при процессах гидрогенизации газы подразделяют на две группы так называемые бедные и богатые. Бедные газы содержат, помимо метана, сравнительно небольшие количества других парафиновых углеводородов и состоят главным образом из водорода, в то время как богатые газы, наоборот, содержат мало водорода и много углеводородов от этана и выше. Ниже для общей ориентации приводится состав (в %) типичных бедного и богатого газов иэ сепараторов блока предварительного гидрирования. [c.32]

    Источниками образования газов при гидрогенизации бурых углей могут являться, например  [c.32]

    Опишем кратко процесс гидрогенизации бурого угля в том виде, в котором он осуществляется на современных установках. По этому процессу, в частности, работают установки в Германии (см. общую схему гидрогенизационной установки, рис. 4). Рассмотрим те процессы, [c.32]

    Катализатор жидкофазной гидрогенизации, добавляемый к сырому бурому углю в виде массы Байера или болотной руды, имеет следующий состав (%). [c.33]

Рис. 4. Схема производства бензина гидрогенизацией бурых углей с учетом процессов получения и переработки газов гидрогенизации. Рис. 4. <a href="/info/125860">Схема производства</a> <a href="/info/7174">бензина</a> гидрогенизацией бурых <a href="/info/1013128">углей</a> с учетом <a href="/info/1547368">процессов получения</a> и <a href="/info/354495">переработки газов</a> гидрогенизации.
    А—приготовление угольной пасты Б—жидкофазная гидрогенизация В—предварительное гидрирование Г—бензинирование или расщепление Д—стабилизация Е—получение этана Ж—получение пропана 3—осушка газа И—получение бутана К—абсорбционная очистка газа (удаление аммиака) Л—производство газового бензина М—газоочистка (удаление СО и Н З) И—алкацидная очистка, молотковая дробилка 2—вращающаяся сушилка 3—бункер для сухого (4% НаО) угля с катализатором 4 —бак для затирочного масла 5—ластовый насос высокого давления 6—регенератор (теплообменник) / сепаратор Л—газоподогреватель 9—реактор 10—уровнемер 11—горячий сепаратор 12—центрифуга 3—печь полукоксования шлама 14—емкости для дросселирования 15—холодильник 16—продуктовый сепаратор 17—водоотделитель 18—циркуляционный насос 19—масляный абсорбер 20—детандер 21—алкацидный абсорбер 22—реактор с окисью железа (280°) для удаления сероокиси углерода 23—сборник среднего масла 24—дистилляционная колонна 25—водный абсорбер 26—бак для среднего масла 27—электрический подогреватель сборник бензина 29—емкости для среднего масла Б  [c.35]

    Угольная паста, содержащая необходимое количество катализатора, подается двумя ластовыми насосами череэ два теплообменника (так называемые регенераторы), в которых она подогревается горячим продуктом, отходящим от реактора жидкой фазы. Затем паста проходит через печь, отапливаемую газом, и после нагрева до требуемой температуры поступает в реакторы, где при 480—500° и давлении около 250 ат протекает процесс жидкофазной гидрогенизации. [c.35]


    Вследствие накопления углеводородов парциальное давление водорода постепенно снижается, что приводит к значительному падению эффективности гидрогенизации. [c.36]

    Для абсорбции применяется среднее масло процесса гидрогенизации. После насыщения этого масла газообразными углеводородами его подвергают дросселированию в две ступени. Сначала масло дросселируют до давления 25 ат, причем выделяются главным образом водород, метап и некоторое количество этана наряду с азотом. Эти газы направляются в сборник бедного газа, где они смещиваются с бедным газом, поступающим с других установок. Суммарный бедный газ после очистки от сероводорода поступает в сеть топливного газа. [c.36]

    Затем абсорбционное масло дросселируют с 25 до ат, при этом выделяются высокомолекулярные газообразные парафиновые углеводороды, как пронан и бутан, а,также остальное количество этана наряду с высококипящими компонентами, в частности некоторым количеством пентана. Эти газы направляют в сборник богатых газов процесса жидкофазной гидрогенизации и в дальнейшем перерабатывают совместно с богатыми газами жидкой фазы гидрогенизации угля. [c.36]

    Около 25% угольной пасты, введенной в реакционные колонны жидкой фазы, выделяется в виде щлама с содержанием 34— 38% твердых веществ, состоящих иэ золы, катализатора и других твердых веществ. Выделяющийся при дросселировании щлама газ направляется в сборные емкости бедного газа. Дальнейшая переработка шлама после его дросселирования производится в две ступени. Сначала шлам разбавляют остатком дистилляции угольного гидрюра до 18%-кого содержания твердых веществ и направляют на центрифугирование. На второй ступени из остатка центрифугирования полукоксованием удаляют масло полученное центрифугированием масло (масло фугования) используется как компонент затирочного масла, т. е. для приготовления пасты. В масле фугования содержатся значительные количества асфаль-тенов, которые таким образом возвращаются в реакторы угольного блока. Анализ процесса переработки щлама показывает, однако, что при рассмотренных выше условиях гидрогенизации асфальтены не перерабатываются полностью, поэтому при циркуляции они будут накапливаться в системе (фактически при процессе гидрогенизации разложения асфальтенов происходит лишь при давлении 400 ат и выше). [c.38]

    Эту стадию процесса проводят для разложения кислородных и азотистых соединений (главным образом фенолов н гетероциклических азотистых соединений) среднего масла А, полученного гидрогенизацией в жидкой фазе, так как эти гетероциклические примес Л легко вызывают отравление катализатора стадии расщепления. Расщепления с одновременно протекающей структурной изомеризацией при этом практически не происходит. Однако некоторые количества низкокипящих углеводородов все же неизбежно образуются одновременно происходят изменение содержания фенолов и образование аммиака в результате деструктивной гидрогенизации азотистых соединений, а остаточное количество сернистых соединений, присутствующих в среднем масле, превращается [c.39]

    Водород, как и на жидкой фазе, циркулирует в системе при помощи газового циркуляционного насоса. Масляная абсорбция циркуляционного газа по типу применяемой в процессе жидкофазной гидрогенизации в данном случае вследствие значительно меньщего газообразования не является необходимой. Количество бедного и богатого газов, выделяющихся при ступенчатом дросселировании, здесь соответственно меньще, чем на жидкой фазе. Горячего сепаратора нет, так как в продукте полностью отсутствуют твердые вещества. [c.40]

    Богатый газ стадии жидкофазной гидрогенизации очищают, как указывалось выше, и вместе с богатым газом паровой фазы направляют на дальнейшую переработку. Аналогично соединяют и бедные газы, которые после очистки от сероводорода па алкацидной установке направляют в сеть топливного газа. [c.43]

    Примерами каталитических процессов, применяемых в нефтепереработке и нефтехимических производствах, являются каталитиче ский крекинг и риформипг различных видов сырья, гидрогенизация, дегидрирование, полимеризация, гидратация, алкплирование и другие. К некаталитическим процессам относятся термический крекинг и пиролиз, протекающие под воздействием высоких температур. [c.262]

    Примерами экзотермических реакций являются гидрогенизация, алкилпрование, синтез полиэтилена и другие процессы полимеризации, гидратация непредельных углеводородов и другие. К эндотор мическим реакциям относятся каталитический и термический крекинг, пиролиз, каталитический риформинг, дегидрирование и др.  [c.262]

    Если непредельное соединение и водород предоставить самим себе, то реакция между ними будет идти очень медленно. Однако химик может ускорить ее, прибавив немного мелкого порошка определенного металла. Сам металл в реакции не участвует — просто поверхность его крупинок, по-видимому, представляет србой идеальное место для соединения непредельного углеводорода с водородом. Поэтому в присутствии металла гидрогенизация идет в миллионы раз быстрее, чем без него. [c.39]

    В других странах работы в этой новой области первоначально сильно отставали, что частично объяснялось полным отсутствием нефти в этих странах, вследствие чего химическая переработка нефтепродуктов не привлекала большого внимания. Кроме того, имела значение и потребность 1В крупных затратах при осуществлении процессов производства алифатических химических продуктов. В Германии необходимость химической переработки парафиновых углеводородов возникла только после промышленного осуществления процессов гидрогенизации углей и синтеза углеводородов по Фишеру—Тропшу, являющихся источником исходного сырья. [c.7]

    Дополнительной очисткой рафината путем гидрогенизации в рассмотренных выше условиях удается получить полноценное сырье для химического синтеза из первоначально совершенно непр-игодного сырья. [c.15]

    В то время, например, как в стадии жидкофазной гидрогенизации и предварительного гидрирования соотношение н-бутана и изобутана смещено в сторону преобладания н-бутана, бутаны, образующиеся при бензинировании, содержат до 80% изобутана. Суммарное же соотношение н-бутап изобутап приблиэительпо равно 1 1. [c.32]

    Так как процесс гидрогенизации является экзотермическим, то избыточное количество тепла, не расходуемое на поддержание требуемой температуры, должно отводиться из реакторов. Теплоотвод осун1е-ствляют подачей части потребляемого при реакции водорода в виде холодного газа . Размеры реактора высокого давления изменяются в пределах диаметр 800—1200 мм, высота соответственно 6—9 м . Свободный реакционный объем составляет 6—9 м . Так как в процессе применяют болыной избыток водорода, назначение которого заклю- [c.35]

    Из сепараторов жидкий продукт направляется в так называемые емкости дросселирования, в которых в результате снижения давления выделяются и отделяются от жидких компонентов, растворенные в углеводородной смеси гаэы. Как и в случае промывки циркулирующего газа, дросселирование проводится в две ступени. При первой ступени дросселирования с 250 до 50—25 ат выделяются главным образом труднорастворимые и наиболее трудно ожижаемые давлением газы, как водород, азот, метан и т. д. (бедный газ). Газы жидкой фазы гидрогенизации, выделяющиеся при дросселировании до 25 ат, имеют примерно следующий состав (в %)  [c.37]

    При дросселировании с 25 до 4 аг и с 4 до 1 ат также выделяются богатые газы с высоким содержанием углеводородов. Они объединяются с богатыми газами масляной промывки циркуляционного газа жидкой фазы и вследствие высокого содержания в них углекислоты и сероводорода, характерного для богатых гаэов жидкой фазы, направляются на специальную очистку, после которой поступают в общий газгольдер для богатых газов гидрогенизации. [c.37]

    Они ЯВЛЯЮТСЯ вторым источником получения газообразных парафиновых углеводородов в процессе гидрогенизации углей. Особо следует отметить, что богатые газы жидкофазноГ ступени содержат весьма большое количество сероводорода. Это можно объяснить тем, что практически вся сера, содержащаяся в буром угле в виде органических сернистых соединений, подвергается гидрированию. Наряду с сероводородом в газах содержатся также небольшие количества сероокиси углерода OS и меркаптанов. Помимо газов иэ приемника продуктов угольного блока (источник 3 на схеме не обозначен), богатый газ образуется также при последующей дистилляции угольного гидрюра (источник 4). [c.37]

    Все перечисленные богатые газы, образующиеся при жидкофазной гидрогенизации, перерабатываются совместно. В первую очередь из этой газовой смеси выделяют так называемый газовый бензин, т. е. кипящие выше бутана парафиновые углеводороды. Эта операция проводится при 3 аг в абсорбционных колоннах, орошаемых тяжелым средним маслом, получаемым при дистилляции жидкофаэного гидрюра. [c.37]

    Насыщенное абсорбционное масло не направляется на регенерацию, а вместе с поглощенным им газовым бензином, который также требует дополнительной обработки, поступает в реакторы парофазной гидрогенизации (стадия предварительного гидрирования). Отбензинен- [c.37]

    Сероводород перерабатывается с получением серной кислоты или элементарной серы. Газовая смесь после алкацидной промывки еще содержит органическую серу в виде сероокиси углерода и меркаптанов. Эту газовую смесь пропускают при температуре 280° над окисножелез-ным контактом, активированным окисью хрома (90% РегОз и 5—7% СггОз), причем органическая сера превращается в сероводород. Серо-окись углерода взаимодействует с содержащимся в газе водяным паром, образуя двуокись углерода и сероводород. Эти гааы без выделения вновь образовавщегося сероводорода смещиваются с богатыми газами нарофазной гидрогенизации (см. ниже) в сборной емкости и в дальнейшем перерабатываются вместе с ними. [c.38]

    Продукты, собирающиеся в емкости угольного гидрюра (продукт жидкофазной гидрогенизации угля — гидрюр и масло, конденсирующееся после холодильника), направляются на дистилляцию, где в виде дистиллята отбираются все компоненты, кипящие до 350° (среднее масло А). [c.39]

    Тяжелый конденсат используется для промывки богатого газа жидкой фазы гидрогенизации, где он насыщается компонентами газового бензина при давлении 3 ати. Отсюда конденсат поступает в резервуар для среднего масла А, в который направляется также легкий конденсат. Смешением легкого конденсата с тяжелым конденсатом, содержащим газовый бенэин, заканчивается жидкофазная ступень гидрогенизации. [c.39]

    Продукт предварительного гидрирования фракционируется на самостоятельной дистилляционной установке для выделения бензина и среднего масла (среднее масло Б). Среднее масло Б (называемое так для отличия его от среднего масла А жидкофазной гидрогенизации) направляется на ступень бензинирования или расщепления, а бензин вместе с бензином ступени расщепления направляется потребителям как товарный продукт, Предварт ельпо он подвергается специальному процессу очистки, который кратко описан ниже. Продукты предварительного гидрирования и расщепления не могут перегоняться вместе, так как бензин обеих ступеней для достижения достаточно высоких октановых чисел должен иметь различный конец кипения. Бензин предварительного гидрирования приходится отбирать с концом кипения 145°, в то время как при перегонке гидрюра расщепления конец кипепия отбираемого бензина можно значительно повысить — до 190°. [c.41]

    Так как во время расщепления сероводорода -практически не выделяется, то опасность обессеривания активных компонентов катализатора (сульфида вольфрама) водородом, находящимся под высоким давлением и при высокой температуре гидрогенизации, очень велика. При этом неизбежно весьма значительное и недолустимое для технологического процесса снижение активности катализатора. Поэтому на стадии расщепления специально добавляют сероводород в количестве около 3 /сг на 1 7- поступающего сырья. [c.42]


Смотреть страницы где упоминается термин Гидрогенизация: [c.279]    [c.15]    [c.32]    [c.32]    [c.35]    [c.39]   
Смотреть главы в:

Производство и применение жидких парафинов -> Гидрогенизация

Промышленные каталитические процессы и эффективные катализаторы -> Гидрогенизация

Мультиплетная теория катализа Ч.1 -> Гидрогенизация

Химия и переработка угля -> Гидрогенизация

Пилотные и опытно - промышленные установки высокого давления в нефтепереработке и нефтехимии -> Гидрогенизация

Химия технология и расчет процессов синтеза моторных топлив -> Гидрогенизация

Промышленные каталитические процессы и эффективные катализаторы -> Гидрогенизация

Технология органического синтеза -> Гидрогенизация

Каталитические процессы в нефтепереработке Издание 2 -> Гидрогенизация

Методы элементоорганической химии Германий олово свинец -> Гидрогенизация

Мультиплетная теория катализа Ч.1 -> Гидрогенизация


Химия для поступающих в вузы 1985 (1985) -- [ c.289 ]

Химия для поступающих в вузы 1993 (1993) -- [ c.344 ]

Неорганическая химия (1981) -- [ c.252 , c.253 ]

Пособие по химии для поступающих в вузы 1972 (1972) -- [ c.347 ]

Органические синтезы. Т.2 (1973) -- [ c.11 ]

Химия (1978) -- [ c.357 ]

Химический энциклопедический словарь (1983) -- [ c.131 ]

Основы синтеза промежуточных продуктов и красителей (1934) -- [ c.488 , c.494 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.131 ]

Справочник Химия изд.2 (2000) -- [ c.444 ]

Катализ в неорганической и органической химии книга вторая (1949) -- [ c.590 , c.612 ]

Подготовка сырья для нефтехимии (1966) -- [ c.32 ]

Химия технология и расчет процессов синтеза моторных топлив (1955) -- [ c.0 , c.368 ]

Учебник органической химии (1945) -- [ c.46 , c.143 ]

Промышленная органическая химия (1977) -- [ c.36 , c.528 , c.602 , c.603 ]

Технология связанного азота Синтетический аммиак (1961) -- [ c.9 , c.12 , c.26 ]

История химии (1975) -- [ c.383 ]

Курс теоретических основ органической химии (1975) -- [ c.2 , c.3 , c.18 ]

Курс общей химии (1964) -- [ c.293 ]

Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.0 ]

Основы технологии органических веществ (1959) -- [ c.0 , c.240 ]

Общая химия 1982 (1982) -- [ c.346 , c.490 ]

Общая химия 1986 (1986) -- [ c.334 , c.474 ]

Неорганическая химия (1981) -- [ c.252 , c.253 ]

Технология переработки нефти и газа Часть 3 (1967) -- [ c.0 ]

Очерк общей истории химии (1979) -- [ c.330 ]

Общая химия (1974) -- [ c.652 ]

Основы технологии органических веществ (1959) -- [ c.0 , c.240 ]

Состав масляных фракций нефти и их анализ (1954) -- [ c.264 , c.267 ]

Общая химия Издание 18 (1976) -- [ c.343 , c.486 ]

Общая химия Издание 22 (1982) -- [ c.346 , c.490 ]

Лакокрасочные покрытия (1968) -- [ c.68 ]

Химия и физика каучука (1947) -- [ c.120 ]

Технология органического синтеза (1987) -- [ c.45 , c.50 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.0 ]

Курс органической химии Издание 4 (1985) -- [ c.0 ]

Реакционная аппаратура и машины заводов (1975) -- [ c.62 ]

Основы химической технологии (1986) -- [ c.218 ]

Химия Издание 2 (1988) -- [ c.295 ]

Общая химия Изд2 (2000) -- [ c.442 ]

История химии (1966) -- [ c.365 ]

Общая химическая технология Том 1 (1953) -- [ c.0 ]

Общая химическая технология топлива (1941) -- [ c.69 , c.79 , c.82 , c.711 , c.713 ]

Общая химическая технология топлива Издание 2 (1947) -- [ c.35 , c.43 , c.456 ]

Реакции координационных соединений переходных металлов (1970) -- [ c.124 , c.222 ]

Хроматография на бумаге (1962) -- [ c.464 ]

Курс органической химии (1955) -- [ c.200 ]

Синтетические каучуки (1949) -- [ c.48 ]

Курс общей химии (0) -- [ c.383 ]

Курс общей химии (0) -- [ c.383 ]

Предмет химии (0) -- [ c.383 ]




ПОИСК







© 2025 chem21.info Реклама на сайте