Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа кипения

    Температура кипения ацетона 56,1°С, а его эбулиоскопическая константа равна 1,73°. Вычислить температуру кипения 8%-ного раствора глицерина СзНбОз в ацетоне. [c.100]

    Зная эбулиоскопическую и криоскопическую константы растворителя, можно вычислить температуры кипения и кристаллизации растворов, еслн известны их концентрации. [c.98]


    Найти молекулярную массу растворенного вещества эбулиоско-пическим или криоскопичес нм методом — это значит найти такое количество его (в граммах), которое, будучи растворено в 1000 г растворителя, повысит температуру кипения раствора на величину, равную эбулиоскопической константе растворителя, или соответственно понизит температуру кристаллизации раствора на величину, равную криоскопической константе растворителя. [c.99]

    Средняя температура кипения нефтепродукта необходима для расчета ряда физических констант. Она может определяться как  [c.10]

    При определении различных физических констант нефтепродуктов принято пользоваться средней молярной температурой кипения. [c.11]

    Нередко бывает необходимо определить температуру кипения жидкости. Если жидкость совершенно чистая и не содержит каких-либо примесей, то при определенном внешнем (атмосферном) давлении она всегда будет кипеть при постоянной, строго определенной температуре. Поэтому по температуре кипения жидкости можно судить о ее чистоте, и эта постоянная величина, или константа, является одной из важных характеристик жидкого вещества. Температура кипения, как указывалось выше, зависит от внешнего давления. Однако не все жидкости устойчивы при нагревании. Поэтому все термически стойкие вещества можно нагревать и кипятить при нормальном давлении, а термически нестойкие—только при уменьшенном давлении (под вакуумом).  [c.166]

    Разделение на фракции проводили ректификацией. О положении хлора в молекуле судили по физическим константам фракций (температура кипения, показатель преломления, плотность), сравнивая их с литературными данными. Омылением фракции, принятой за первичный хлористый ундецил, получен спирт, который был переведен в ундекано-вую кислоту окислением перекисью водорода в щелочной среде. Выход по отдельным стадиям авторы не приводят. [c.558]

    Моляльная константа повышения температуры кипения растворителя В, называемая также эбулиоскопической констанюй, зависит только от свойств растворителя-его нормальной температуры кипения, моле- [c.141]

    И широко используется для прямых и обратных расчетов. При определении констант уравнения (1.54) по опытным данным рекомендуется вначале находить константу С по эмпирическому уравнению, связывающему ее с нормальной точкой кипения данного компонента [c.30]

    L , —потоки жидкости и пара на я-й тарелке р —номер тарелки питания, считая сверху Ат — константа фазового равновесия компонента с температурой кипения Т, находящейся при температуре Тп и давлеиии Рп- [c.93]


    Для номограммы Хеддена составлены два алгоритма. Первый предназначен для вычисления констант фазового равновесия парафиновых и олефиновых углеводородов и узких нефтяных фракций со средней температурой кипения до 593°С в интервале температур 260—537 °С и давлений 0,0352—7,03 МПа  [c.44]

    Практическое значение показателя плотности нефти и нефтепродуктов очень велико. В сочетании с другими физико-химическими константами (температура кипения, показатель преломления, молекулярный вес, вязкость и др.), плотность является параметром, характеризующим химическую природу, происхождение и товарное качество нефти или нефтепродукта. Так, для фракций с одинаковыми температурами начала и конца кипения плотность наименьшая, если они выделены из парафинистых нефтей, и наибольшая, если они получены из высокоароматизированных нефтей. Фракции, [c.37]

    Коллигативные свойства растворов. Понижение давления пара, повышение температуры кипения, понижение температуры замерзания и осмотриеское давление. Моляльные константы повышения точки кипения (эбулиоскопическая константа) и понижения точки замерзания (криоскопическая константа). Определение молекулярного веса растворенного вешества. [c.119]

    Обезвоживание пропана. Для обезвоживания жидкого пропана применяется одна из разновидностей азеотропной перегонки. В процессе получения и при последующем хранении жидкий пропан поглощает небольшое количество воды в растворенном виде. При полном насыщении и при температуре 27° в пропане содержится 0,092% мол. воды. Активность воды, растворенной в пропане, очень высока, однако эту воду можно отогнать в виде азеотропной смеси [12]. Схема этого процесса изображена на рис. 24. Влажный пропан непрерывно поступает в колонну для обезвоживания. Сухой пропан (температура кипения при атмосферном давлении —42°) получается в виде остатков, а отогнанный продукт представляет собой азеотропную смесь воды и пропана. После конденсации отогнанный продукт расслаивается на две фазы. Верхняя — углеводородная — фаза возвращается в колонну, а нижняя — водная — фаза сливается. Данные по равновесию системы жидкость — пар для пропана, насыщенного водой, приведены в табл. 26. При низких давлениях константа равновесия для испарения воды из раствора в пропане значительно превышает единицу. Это означает, что в данных условиях вода является более летучим компонентом. [c.129]

    Аналогична криоскопической постоянной константа кипения, или эбуллиоскопическая постоянная (лат. ebulyo — вскипать). Она характерна для данного растворителя и показывает, на сколько градусов повышается температура кипения при растворении [c.105]

    На рйс. 30 дана схема важнейших промышленных способов разделения газовых смесей. В табл. 14 были приведены важнейшие физические константы моноолефинов, в табл. 36 сопоставлены температуры кипения низкомолекулярных, газообразных при нормальных условиях парафинов и олефинов. [c.69]

    Повышение температуры кипения раствора, содержащего один моль в 1000 с растворителя,— величина постоянная для данного растворителя. Она называется молекулярным повышением температуры кипения, константой кипения, или эбулиоскопи-ческой константой (от лат. еЬЬи1еге — кипение). Константы кипения для различных растворителей (и константы замерзания, см. дальше) приведены ниже  [c.106]

    Затем трубку охлаждали до комнатной температуры. От полученных ароматических углеводородов отделяли слой кислоты, промывали в начале 10%-ным раствором щелочи натрия до удаления кислой реакции, затем — водой, сушили над хлористым кальцием и перегоняли в присутствии металлического натрия. Продукт целиком перегиался в пределах 109— 110°С, что соответствует точке кипения толуола. Остальные константы выделенных нами аромати еских углеводородов оказались аналогичными с толуолом. Для сравнения приведем полученные нами константы толуола и константы толуола по Байльштайну. [c.21]

    Как видно из приведенных данных, от Се к Ьи в изменении плотности, температуры плавления и кипения проявляется внутренняя периодичность. Минимальные значения этих констант приходятся на Ей и УЬ. Об этом же свидетельствует рис. 248, на котором показана зависимость энтальпии атомизации (возгонки) лантаноидов от порядкового номера элемента. Низкие значения энтальпии атомизации европия и иттербия, по-видимому, объясняются тем, что вследствие устойчивости несвязывающей конфигурации 4 и в образовании связей у этих элементов принимают участие лишь два бз-элек-трона. [c.642]

    Особое значение адсорбционный метод выделения ароматических углеводородов имеет для смеси углеводородов с близкими физико-химическими константами, например бензола и циклогексана. Вследствие близости температур кипения этих веществ разделить их простой ректификацией невозможно. Попытки очистки циклогексана на силикагеле не дали высокой степени извлечения бензола. В этом отношении цеолиты имеют ярко выраженную избирательную способность к бензолу и дают возможность тонкой адсорбционной очистки циклогексана. Прп этом синтетические цеолиты типа X имеют высокую адсорбционную способность по бензолу в области малых концентраций. В динамических условиях возможна очистка циклогексана от примесей бензола как в жидкой, так и паровой фазе степень чистоты 99,999%. [c.114]


    Поскольку нефть и нефтепродукты представляют собой многокомпонентную непрерывную смесь углеводородов и гетероатом — ны> соединений, то обычными методами перегонки не удается разделить их на индивидуальные соединения со строго определен — ны (и физическими константами, в частности, температурой кипения при данном давлении. Принято разделять нефти и нефтепро — дук ы путем перегонки на отдельные компоненты, каждый из которых является менее сложной смесью. Такие компоненты при — пято называть фракциями или дистиллятами. В условиях лабораторной или промышленной перегонки отдельные нефтяные фракции отгоняются при постепенно повышающ,ейся температуре кипения. Следовательно, нефть и ее фракции характеризуются ие температурой кипения, а температурными пределами начала кипения (н.к.) и конца кипения (к.к.). При исследовании качества новых нефтей (т.е. составлении технического паспорта нефти) фракцион — ный состав их определяют на стандартных перегонных аппаратах, снабженных ректификационными колонками (например, на АРН — [c.59]

    Пункт второй вносит больше затруднений. Дело в том, что разность в удельных весах пяти- и шестичленных циклов, при одина- ковом молекулярном весе падает с увеличением последнего (и тем-, лературы кипения). Поэтому особенные погрешности должны падать на легкие фракции, если мы примем за основу какой-нибудь средний уд. вес. Тиличеев (1. с.) дает для этих констант следуюш ие величины (ом. табл. 34 на стр. 162). [c.161]

    Растворы зг1кипают при температуре, превышающей температуру кипения чистых растворителей, и кристаллизуются при темгге-ратуре, лежащей ниже температуры кристаллизации чистых растворителей. Если приготовить раствор из 1000 г растворителя и 1 моля неэлектролита , то такой раствор из 1000 г растворителя и 1 моля неэлектролита повышение температуры кипения по сравнению с температурой кипения чистого растворителя. Это повышение температуры кипения называется молярным повышением температуры кипения растворителя или его эбулиоскопической константой. Эбу-лиоскопическая константа воды, обозначаемая символом равна 0,52° это значит, что растворы, содержащие по 1 молю неэлектролита на 1000 г воды, будут кипеть при 100,52°С. [c.98]

    Эбуллиоскопическая константа сероуглерода равна 2,37. Пусть навеска серы взята с точностью 0,0002 г (аналитические весы), а сероуглерода с точностью 0,05 г (технические весы) и температура кипения определена с точностью 0,002° (термометр Бекмана). Следовательно, [c.456]

    Образец № 3, отобранный на заводской установке, представляет собой фракцию с концом кипения 150 °С, поскольку при перегонке на малой лабораторной колонке он почти полностью отгонялся до температуры 150 °С. Все образцы риформинг-дистиллятов исследовались в описанных условиях каталитической очистки и из очищенного продукта отгонялась на той же малой лабораторной колонке фракция до 150 °С. Во всех случаях очищенная фракция имела разгонку по Энглеру, совпадающую или близкую к таковой для неочищенной фракции. Поэтому мы не приводим здесь всех раз-гонок очищенных фракций, а указываем для них основные константы. [c.103]

    Однородная кристаллическая структура природных и синтетических цеолитов и наличие входных окон строго определенного размера дают возможность использовать их для разделения веществ с учетом размеров и формы их молекул. Особый интерес цеолиты приобрели для разделения смесей, компоненты которых имеют близкие физико-химические константы (температуры кипения и застывания, плотность и т. п.), так как обычные методы для этой цели оказываются непригодными. Примером разделения веществ, различающихся по критическому диаметру молекул, может служить очистка изопентана, к чистоте которого предъявляются жесткие требования, от примесей н-пентана. [c.113]

    Был произведен ряд экспериментов с применением двух рабочих жидкостей — воды и четыреххлористого углерода, обладающих весьма различными физическими свойствами. Применение таких жидкостей вызвано необходимостью получения уравнений теплообмена при кипении на горизонтальной и вертикальной поверхности нагрева, имеющих общую применимость. В табл. 31 приведены значения теплофизических констант, которыми следует пользоваться при составлении общего уравнения теплоотдачи. Экспериментом установлено, что теплоотдача при ядерном кипении подчиняется различным законам в зависимости от величины теплового потока. Переход от одного к другому закону совершается в пределах от 5000 до 10 000 ккал1м час для горизонтальных 112 [c.112]

    Опыты проведены с применением шести веществ воды, четыреххлористого углерода ССЦ, бутилового спирта, изопропилового спирта, раствора углекислого калия (с концентрацией 35 и 50%) К2СО3. Все измерения производились при атмосферном давлении. Теплофизические константы веществ и температура их кипения при 760 мм рт. ст. приведены в табл. 35. [c.118]

    Характерной чертой модификации парафина, устойчивой при повышенной температуре, является пластичность и способность отдельных частичек парафина полностью сливаться или спаиваться при сжатии. По некоторым свойствам физическое состояние данной модификации несколько приближается к состоянию так называемых жидких кристаллов. Вторая же модификация парафина, устойчивая при низких температурах, является типичным твердым кристаллическим телом и отличается твердостью, хрупкостью, неспособностью отдельных частиц спаиваться при сжатии. Переход [арафина из одной модификации в другую сопровождается тепловым эффектом в виде поглощения или выделения при температуре перехода скрытого тепла. Сама же величина температуры перехода имеет для данного парафина характер физической константы, аналогичной температуре плавления или кипения. При переходе парафина из одной модификации в другую наблюдается скачок в изменении его физических свойств, зависимых [c.59]

    Аналогична криоскопичесКой постоянной константа Кипения или эбулиоскопическая постоянная (лат. еЬи уо — вскипать). Она характерна для данного растворителя и показывает на сколько градусов повышается температура кипения при растворении одного моля неэлектролита в 1000 г растворителя. Численные значения эбулиоскопи-ческих констант кипения приведены в табл. 30. [c.133]

    Как видно из приведенных данных, плотность К, Rb и s невелика (кал1 й, подобно Li и Na, даже легче воды), температуры плавления и кипения невысокие. Эти металлы очень мягки и легко режутся ножом. Существенно, что от лития к натрию и далее к калию значения большинства констант меняются довольно резко. [c.491]

    Всякое индивидуальное химически чистое вещество характеризуется совокунностью физических свойств, называемых его константами. Такими константами являются плотность, темнература кипения, температура плавления и др. [c.149]

    Цетано- вое число Средняя анилиновая точка , °С Дизель- ный индекс Вязкостно- нлотност- ная константа Фактор зависимости между температурой кипения и плотностью Характери- стический фактор [c.442]

    В качестве сырья %пя крекирования брался газойль сураханской отборной нефти с удельным весом 0,8605, выкипаемостью до 300 "С 14 %, до 360 "С — 70 % при начале кипения 220 С и общим содержанием ароматических углеводородов 12 % (анилиновая точка деароматизированного газой.1гя 96,0). Б онисанпой выше аппаратуре этот газойль пропускался в течение 40 мик через испытуемые >б])азцы глин нри температуре 460—480 "С со скоростью 0,6 ч (табл. 4). Р( зультаты испытания пеактивиронанпых глин показали, что они обладают значительно меньшей каталитической активностью, чем активированная гл1зни Л" 2. При сопоставлении констант, характеризующих [c.83]

    Значения моляльной константы повышения температуры кипения некоторых распространенных растворителей приве.аепы в табл. 18-4. [c.141]


Смотреть страницы где упоминается термин Константа кипения : [c.105]    [c.87]    [c.43]    [c.84]    [c.85]    [c.85]    [c.100]    [c.248]    [c.74]    [c.74]    [c.143]    [c.141]    [c.154]    [c.109]    [c.406]   
Общая химия (1974) -- [ c.409 ]




ПОИСК





Смотрите так же термины и статьи:

Идентификация и характеристика с помощью производных констант, в которые входит температура кипения

Константы уравнения Антуана и температура кипения нормальных алканов при различных давлениях

Молярные константы понижения температуры замерзания повышения температуры кипения

ОСНОВНЫЕ ФИЗИЧЕСКИЕ КОНСТАНТЫ УГЛЕВОДОРОДОВ (нормальные температуры кипения, плотности, показатели преломления, температуры и теплоты превращения и кристаллизации, криоскопические константы) Тиличеев Нормальные температуры кипения, плотности и показатели преломления углеводородов

Температура кипения производные константы

Эбулиоскопические константы К3 некоторых растворителей (tK - температура кипения)

Энтропийно-информационная модель для расчетов критических констант углеводородов по их температурам кипения и плотностям



© 2024 chem21.info Реклама на сайте