Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крекирование

    Олефины, содержащиеся в продуктах крекинга и особенно в крекинг-газах, являются хорошим и легко доступным для производства сырьем. Для увеличения ресурсов олефинового сырья парафины или более тяжелые фракции специально подвергают крекированию (пиролизу). Таким образом, этилен получается в результате крекинга различных газов С2—С4 (этан, пропан, бутан) и жидких фракций (газойль, лигроин и мазут). Пропилен получается при термическом и каталитическом крекинге лигроинов и газойлей, а также из пропана и бутана. [c.577]


    Лишь углеводороды с низким молекулярным весом, т. е. кипящие при комнатной температуре, могут быть легко разделены па индивидуальные соединения. Возможное и действительное существование многих изомеров для каждой определенной формулы углеводорода делает такое разделение намного более сложным с ростом молекулярного веса и даже невозможным. Но оставалась необходимость характеризовать нефтяные фракции химически, и были предложены методы для того, чтобы вывести химический состав из значений некоторых физических свойств углеводородных смесей. Эти методы, отражающие антидетонационную характеристику фракций, впервые появились при разрешении вопроса о составе лигроинов как крекированных, так и прямогонных. Самые ранние попытки для более высококипящих фракций были более эмпирическими путем физических измерений вычислялась средняя температура кипения бензинов, которая хорошо согласовывалась с некоторыми желаемыми свойствами, но особых попыток связать температуру кипения с химическим составом не было. [c.207]

    Действительно, па 100 молей крекированного /г-гексадекана обнаруживается от 30 до 40 / о-гей изобутановых структур [19], с преобладанием в продуктах крекинга, как показывает рис. 1, осколков С , С4 и С5. [c.127]

    Цессов в нефтеперерабатывающей промышленности США (до 60% от мощности по прямой перегонке нефти), что в свою очередь связано с необходимостью повышенного отбора автомобильного бензина, который может быть достигнут лишь в процессе крекирования тяжелых дистиллятов. [c.36]

    Значительный интерес для процесса оксосинтеза представляют бензины, полученные термическим крекингом грозненских парафиновых нефтей. Углубление режима крекирования сырья из грозненских месторождений позволит получать бензины, характеризующиеся низким содержанием серы и высоким содержанием непредельных углеводородов. [c.103]

    Крекинг. В литературе описан способ крекирования смеси побочных продуктов при 300—380 °С и атмосферном давлении в присутствии серной кислоты как катализатора или без нее . При осуществлении процесса периодическим способом температуру в аппарате постепенно повышают до 380 °С и непрерывно отбирают образующиеся дистиллятные продукты. В том случае, если предполагается использовать фенолы в виде смеси, из дистиллята выделяют только хлорбензол. если нужно получать индивидуальные фенолы, проводится ректификация дистиллята. Крекинг можно вести до образования жидкого остатка или до кокса и в том и в другом случае остаток легко выгружается из аппарата. Температуру жидкого остатка нужно поддерживать 150—200 °С, а кокс можно выгружать и после охлаждения. [c.182]


    Из всех описанных способов разложения побочных продуктов наиболее рациональным можно считать крекинг. Процесс гидрирования требует расхода водорода и сложен в технологическом отношении, так как проводится под давлением. Способ крекирования в присутствии каталитических количеств гидроокисей щелочных металлов представляет особый интерес, потому что получаемые при этом фенол и п-изопропенилфенол могут быть использованы в синтезе дифенилолпропана. [c.183]

    В то же время имеются данные о возможности применения никелевого катализатора на алюмосиликатном носителе (см. табл. 30, № 20). Содержание окиси кремния в таком катализаторе значительно превышает указанную норму. Из опыта крекирования нефтепродуктов известно, что алюмосиликатный катализатор проявляет большую активность при расщеплении углеводородов, чем окись кремния. Тем не менее такой катализатор стабильно работал более четырех месяцев при конверсии бензина, содержащего менее 0,0001 % серы (по другим данным переработка бензина с таким малым содержанием серы сопровождается зауглероживанием катализатора). [c.48]

    Крекированный циклический дистиллят [c.97]

    Кроме того, что циклопропан, циклобутан и их производные могут превращаться в изомерные алифатические олефины и что некоторое количество метилциклопентана наблюдалось при термическом крекировании циклогексана [478, 479], термическая изомеризация нафтенов — явление далеко не типичное. [c.122]

    Крекинг-остатки. Неперегоняемые крекинг-остатки представляют собой смесь высококипящих фракций, образовавшихся при повторном крекинге рециркулирующего сырья, и некоторого количества химически инертных веществ, содержавшихся в исходном сырье. Остатки обычно обладают большой плотностью, но низкой вязкостью, что нехарактерно для тяжелых фракций не-крекированных нефтей. В этом отношении крекинг-остатки напоминают деготь, но есть данные о том, что крекинг-остатки состоят [c.317]

    Главная причина широкого применения каталитического крекинга заключается в том, что он позволяет получать большие выходы высокооктановых бензинов, чем любой известный термический процесс. Кроме того, газообразные продукты каталитического крекинга более ценны, так как они состоят преимущественно из пропановых и бутановых углеводородов и содержат меньше метана и этана. Образование тяжелых нефтепродуктов и высоковязких остатков, имеющих больший молекулярный вес, чем исходный материал, сводится до минимума как бензин, так и не-крекированный рециркулят являются более насыщенными про дуктами, чем продукты термического крекинга. Это в значительной степени обусловлено высоким содержанием ароматических соединений. [c.323]

    Высокооктановый бензин можно получить и термическим крекингом, но в этом случае нужны очень высокие температуры, а потери из-за образования газа и кокса слишком велики. Как и при термическом крекинге, тяжелый газойль, получаемый при каталитическом процессе, содержит значительно больше ароматических углеводородов и может быть использован в качестве сырья для термического крекинга [240, 241]. С помощью гидрирования можно превратить его в продукт с высоким содержанием нафтеновых углеводородов, вполне пригодный для повторного каталитического крекирования [242]. Такая обработка газойля обычно экономически невыгодна тяжелый газойль применяется, как правило, в качестве легкого дистиллятного топлива. [c.324]

    В процессе каталитического крекинга во взвешенном слое [125—126] применяется катализатор в виде порошка (5—100 меш). Здесь используется тот факт, что твердые частицы соответствующего размера при перемешивании в потоке газа образуют однородную систему твердое тело — газ, обладающую свойствами жидкости. Процесс непрерывный предварительно нагретые пары сырья поступают в реактор, неся взвешенный катализатор скорость сжиженной смеси нри входе в реактор уменьшается, что позволяет части порошка осесть, образуя плотный, но еще взвешенный слой, который движется вниз к выходу. Именно в этом слое при температуре 470—520° С происходит крекинг. Давление в реакторе около 0,56 кг см . Отношение катализатор исходный нефтепродукт может колебаться от 5 1 до 30 1. Высота слоя катализатора и, Следовательно, время контакта контролируются. Катализатор отделяется от крекированных паров и удаляется со дна реактора для передачи потоком воздуха в регенератор, из которого он возвращается в поток горячих паров сырья, входящих в реактор. [c.342]

    Продолжительность межремонтных циклов установок атмосферно-вакуумной перегонки нефти, термического крекирования сырья, замедленного коксования находится в прямой зависимости от качества подготовки нефти. При высоком содержании остаточных хлористых солей в обессоленной нефти происходит интенсивно хлористоводородная коррозия аппаратуры и трубопроводов. Наибольшее разрушающее воздействие на оборудование оказывает хлористоводородная и сероводородная коррозия. Поэтому улучшению подготовки нефтей должно уделяться самое серьезное внимание. Для этого на установках электрообессоливания необходимо внедрять технические мероприятия, позволяющие несмотря на увеличение объема нефти значительно улучшать ее качество. К таким мероприятиям относятся использование эффективных неионогенных деэмульгаторов типа дисольван, прогалит, ОЖК и др. увеличение времени обработки с применением дополнительных горизонтальных электродегидраторов более совершенной конструкции меж- и внут-риступенчатая рециркуляция воды, что позволяет без повышения общего ее расхода увеличить соотношение вода — нефть и улучшить отмывку нефти от солей и механических примесей дооборудование установок АВТ и АТ собственными блоками подготовки нефти с монтажом современных высокоэффективных горизонтальных электродегидраторов повышение температуры подогрева нефти и др. [c.199]


    Крекированное сырье при гидроформинге дает сравнительно мало водорода. Его либо смешивают с прямогонным дистиллятом. для достижения нужного содержания водорода, либо предварительно гидрируют. [c.349]

    В печи первой ступени, также невысока — 385 °С. Остаток перегонки, полученный в первой колонне,— гудрон подвергают дополнительному нагреву до 390—430 °С [35—37] и направляют на вторую ступень вакуумной перегонки (рис. 18). Во второй вакуумной колонне поддерживается глубокий вакуум. Так, давление в зоне питания (испарения) составляет 7—18 кПа [11, 35, 37], а наверху — около 8 кПа [И, 37]. В связи с высокими температурами в этой колонне во избежание крекирования остатка осуществляют квенчинг — возврат части охлажденного остатка в низ колонны [35]. Расход водяного пара на первой ступени вакуумной перегонки составляет примерно 2,5%, а на второй — 3,3% в пересчете на исходный мазут [37]. [c.37]

    Асфальты, получаемые из крекинг-остатков [114] (остатки термического крекинга), иногда могут быть представлены как асфальты другого типа. Они напоминают каменноугольные смолы, хотя по характеру являются более ароматическими, дают большое изменение консистенции с температурой и быстро окисляются при выветривании. Как докладывалось, они дают хорошо формующиеся частицы и являются эффективными для дорожных покрытий. Это частично обусловлено низкой вязкостью при плавлении, что делает возможным хорошее распространение. Сырье, из которого они были получены, исчезает, так как объем термического крекирования резко сокращается. Очень важен метод получения асфальтов, но особенно важен тип нефти как определяющий конечные свойства. Из типичных нефтей получаются продукты со следующими свойствами  [c.552]

    Реакции сульфирования и окисления-восстановления протекают в относительно меньшем масштабе, потому что большая часть отработанной кислоты может быть регенерирована. Однако нри очистке крекированных дистиллятов от серы на первый план выступает химическое воздействие кислоты при этом происходят реакции полимеризации, этерификации, конденсации ароматических углеводородов и олефинов, сульфирование и т. д. Азотистые основания при этом нейтрализуются, а нафтеновые кислоты растворяются в серной кислоте. Поэтому состав осадка очень сложный и в значительной степени зависит от природы очищаемого дистиллята, крепости кислоты и температуры очистки. [c.570]

    Сообщали также о крекировании бензина [236]. О переработке легких углеводородов в кислородно-метановом пламени можно прочесть в литературе [237, 238]. [c.577]

    Если состав бензинов прямой перегонки всецело определяется составом исходного сырья, то состав бензинов крекинга в значительной мере зависит от условий проведения процесса крекирования. В условиях термического крекинга с повышением температурного режима крекирования растет содержание непредельных углеводородов в получаемых бензинах. При каталитическом крекинге содержание непредельных углеводородов в бензинах зависит от фракционного состава сырья, температурных условий процесса, свойств катализатора и т. д. (см.. ниже). [c.12]

    Реакторный блок установки APT состоит из лифт —реактора 1 с бункером —отстойником 2, где при температуре 480 — 590 °С и очень коротком времени контакта асфальтены и етеросоединения частично крекированного сь рья сорбируются на специальном широконо — ростом микросферическом адсорбенте (арткат) с малыми удельной поверхностью и каталитической активностью и регенератора 3, в котором выжигается кокс, отлагающийся на адсорбенте. В процессе APT удаление металлов достигает свыше 95 %, а серы и азота — 50 — 85 %, при этом реакции крекинга протекают в минимальной степени (адсорбент не обладает крекирующей активностью). Примерный выход (б % об.) продуктов APT при ТАД гудрона составляет газы С -С — 3 — 8 нафта — 13—17 легкий газойль — 13—17 тяжелый газойль — 53 — 56 и кокс — 7 — 11 % масс. Смесь легкого и тяжелого газойлей с незначительным содержанием м<ггаллоБ является качественным сырьем каталитического крекинга, где выход бензина достигает более 42 % масс, (табл.8.3). [c.108]

    Матрица катализаторов крекинга выполняет функции как носителя — поверхности, на которой затем диспергируют основной активный компонент — цеолит и вспомогательные добавки, так и слабого КИСЛ01Н0Г0 катализатора предварительного (первичного) крекирования высокомолекулярного исходного нефтяного сырья. В качестве материала матрицы современных катализаторов крекинга преимущественно применяют синтетический аморфный алюмоси — ликат с высокой удельной поверхностью и оптимальной норовой структурой, обеспечивающей доступ для крупных молекул креки — ру< мого сырья. [c.109]

    Парафиновыми дистиллятами именуются фракции нефти, являюш,иеся сырьем для выработки парафина в основном методом фильтрнрессования и нотения. Целевым продуктом переработки парафиновых дистиллятов является парафин. Фильтраты же, получаемые от фильтрации парафиновых дистиллятов, остаются обычно депарафинированными не полностью, характеризуются повышенными температурами застывания, большей частью около 0° и выше, и используются в основном как сырье для крекирования или для выработки некоторых индустриальных масел невысокого качества. [c.24]

    Это уравнение представлено графически на рис. 2. Выход крекинг-бензина из различного исходного сырья — дистиллятного и остаточного, крекированного и прямогонного, в самых различных условиях процессов рассчитывается со средней ошибкой до 3%. Уравнение мон но также использовать, слегка изменив его, для расчета выходов бензина в процессе крекинга до кокса (крекинг без получения крекинг-остатков). То обстоятельство, что выходы крекинг-бензина могут быть выражены просто в виде разницы между содержанием водорода в исходном сырье и крекинг-остатке, объясняет, почему оказалось возможным представить выходы бензина как функцию плотности (в °АР1) исходного сырья и крекинг-остатка. Содержание водорода с достаточной точностью выражается через плотность (в °АР1) нефтепродуктов. Отсюда, получая из данного исходного сырья мазуты с одинаковой плотностью, находим, что предельный выход крекинг-бензива лишь в малой степени зависит от других рабочих условий и сохраняется, в основном, неизменным для всех крекинг- [c.35]

    Углеводороды во фракциях крекированного лигроина из нефти Мид-Континента (термический и каталитическрш крекинг)  [c.51]

    В процессе отбензинивания они представляют все, что отгоняется после бензина и керосина (иногда после одного бензина). Этот термин также применим к частично крекированным дистиллятам, пол5гчаемым при ныне устаревшем процессе коксования в горизонтальных кубовых нефтеперегонных установках, для производства парафиновых дистиллятов и к летучим продуктам процессов непрерывного коксования и висбрекинга. Вследствие упомянутого выше применения дистиллятных пефтетоплив, даже высокомолекулярных, в качестве сырья для каталитического крекинга, этот термин в настоящее время расширен и относится ко всем фракциям до тяжелых смазочных масел включительно. [c.479]

    Данные указанных авторов для температуры 1100° С приводятся на рис. 7. Верхняя кривая показывает опредолонную аналитически величину п в зависимости от времени контакта. Конверсия до этана обычно меньше 5% относительно крекированного пропана. Поэтому п лишь приблизительно определяет относительные количества пропана и метана. Когда и = 1,5 при времени контакта 5,13 X 10 сек., количество пропана становится гораздо меньше 5%, тогда как количество этилена и метана почти достигает своего максимума. При болео длительном времени контакта содерн ание метана слегка возрастает, тогда как выход аце илена увеличивается почти в семь раз, т. е. до 21 %. При этом наблюдается снижение концентраций этилена и пропилена. [c.86]

    Как было указано, первичные ионы изомеризуются до вторичных или третичных ионов, а вторичные ионы — до третичных всегда, когда это возможно, с учетом энергетических зависимостей (табл. 3). Для упро-. щения описания механизма крекинга по стадиям была опущена реакция изомеризации исходных или промежуточных ионов до третичных. Последняя, тем не менее, является важной реакцией, поскольку на 100 молей крекированного м-гексадекана образуется, кроме других изоалифатиче-ских углеводородов, молей изобутана и изобутена ([19], таблица XI, [c.126]

    Смесь, подвергаемая крекированию, содержала 26,3% хлорбензола и 10,5% фенола. При крекинге основными продуктами были фенол и /г-изопропилфенол. В небольшом количестве выделены 0-этил- и о-изопропилс )енолы и высококипящие продукты (т. кип. выше 230 °С). Наилучшие результаты дал крекинг до кокса выход фенола (в расчете на исходную смесь) 42,7%, суммарное количество о-этилфенола, о- и п-изопропилфенолов 6,2% дистиллят (т. кип. выше 230 °С) — 14,1%, кубовый остаток — 9%. При крекинге до жидкого остатка снижается содержание фенола и увеличивается количество кубового остатка. [c.182]

    Теоретически испытание масел па устойчивость к окислению и устойчивость к термическому крекингу предскажет, хорошо ли будет стоять масло при эксплуатации. Эти свойства можно рассматривать как отвлеченные, подобно тому как вязкость масла устанавливается независимо от прокачиваемости масла в двигателе. Однако антиокислительная стабильность и сопротивляемость термическому крекингу так близко связаны друг с другом, что трудно рассматривать их как отдельные свойства. Крекированные масла более легко окисляются, а окисленные — более легко крекируются, чем неподв ер гнутые такой обработке исходные углеводороды. [c.88]

    Некоторые сернистые соедпненпя, содержащиеся в нефти, легко разлагаются уже при сравнительно умеренном нагревании, например при перегонке. Другие сернистые соединения разлагаются только в условиях, соответствующих термическому крекированию. Есть и такие высокоустойчивые сернистые соединения, которые не разлагаются даже в очень жестких условиях, нанример при полной деструкции и крекинге до кокса. В легких прямогонных дистиллятах сернистые соединения представлены главным образом меркаптанами, сульфидами и дисульфидами. В дистиллятах термического крекинга, помимо названных соединений, встречаются тиофены, обладающие гораздо большей устойчивостью. В дистиллятах каталитического крекинга были также обнаружены тиофенолы. [c.249]

    Ароматику концентрацией 99,8% получают по этому методу из гидроформированного лигроина. Крекированный лигроин легко разделяется на предельные, олефины и концентрированную ар.ома-тику. Концентраты олефинов, выделенные дистилляцией, дают олефиновые фракции высокой чистоты, которые применяются как химические полупродукты. Считают, что избирательность процесса зависит от характера сырья и адсорбента, но обычно находится в следующих пределах  [c.268]

    Широко известно то обстоятельство, что устойчивость при пиролизе углеводородов так называемой фракции тяжелой нафты характеризуется значением, средним по величине между значениями для бензина и керосина. Это обстоятельство заметили еще ]Иур и Эглоф (Мооге and Egloff [98]), которые установили, что превращение за один проход через печь с температурой 700° С у фракции 200—250° С пенсильванской нефти меньше, чем у других изучавшихся фракций. Вагнер [99]. также сообщает, что тяжелый рисайкл, полученный крекингом при температуре 538° С, отличается особой устойчивостью при дальнейшем крекировании. [c.309]

    Тенденция фракций конденсироваться иа поверхности змеевиков, внутри которых они находятся более длительное время, чем желательно, в результате этого понижается. Это обстоятельство было установлено при выяснении возможности повышения температуры крекинга и степени превращения за один проход с минимумом образования кокса [168]. Процессы, идущие ири температурах свыше 480° С, независимо от давления, проводятся, как правило, в паровой фазе. Эта температ5фа — выше критического значения для большинства обычно содержащихся в нефти углеводородов. Количество вещества, которое подвергается крекированию за определенный промежуток времени, например, за один проход через зону нагрева (этот показатель носит название конверсия за проход ), можно определить с помощью коэффициента рециркуляции, который выражается отношением  [c.315]

    Оценка сырья для получения газа. Целесообразность применения для получения газа различных продуктов была предметом большого количества исследований. Линден и Петтиджон [223] показали, как меняется выход и качество продуктов в зависимости от соотношения углерод водород и содержания кокса по Конрадсону в сырье и в зависимости от условий крекинга. Для получения газа могут быть использованы самые разнообразные нефтепродукты — критерием выбора сырья является экономика. Гомогенный, с узким фракционным составом дистиллят более пригоден, чем широкая фракция или смесь веществ с сильно отличающимися температурами кипения, так как он может быть крекирован при одной определенной температуре. В случае крекинга сырья с широким фракционным составом не все его компоненты оказываются в одинаковых условиях крекинга. [c.322]

    Таким образом, для создания безопасных услови и поддержания оптимального режима работы ацетиле новых реакторов необходимы быстрое и равномерно( горение части метана, крекирование избыточного ме тана, кратковременное поебывание газов в реакционно зоне и резкое охлаждение их на выходе из этой зон1 (закалка). [c.56]

    Футеровку облицовывают листами из легированной стали 0X13. Снаружи реактор покрывают тепловой изоляцией из стекловаты, набранной в маты. С.месь паров нефтепродуктов, пылевидного катализатора и пара поступает в нижнее днище и, пройдя пучок каналов распределительного устройства 12, поднимается в верхнюю часть аппарата, где происходит реакция крекирования. Парообразные продукты реакции вместе с катализатором поднимаются в верхнее днище через циклоны 5, где пылевидный катализатор улавливается в сборные воронки и по трубе 3 попадает в низ реактора. Пары нефтепродуктов из цилиндрической части направляются по трубопроводу в ректификационный блок установки. Активность катализатора быстро снижается вследствие того, что его поры забиваются сажей и смолистыми веществами. [c.193]

    МПа и различном премени крекирования (полученный риформинг-бензин характеризуется концом кипепия 190—225 °С и вт.1кииает па 50 % до 110 — 135 С). [c.43]

    В качестве сырья %пя крекирования брался газойль сураханской отборной нефти с удельным весом 0,8605, выкипаемостью до 300 "С 14 %, до 360 "С — 70 % при начале кипения 220 С и общим содержанием ароматических углеводородов 12 % (анилиновая точка деароматизированного газой.1гя 96,0). Б онисанпой выше аппаратуре этот газойль пропускался в течение 40 мик через испытуемые >б])азцы глин нри температуре 460—480 "С со скоростью 0,6 ч (табл. 4). Р( зультаты испытания пеактивиронанпых глин показали, что они обладают значительно меньшей каталитической активностью, чем активированная гл1зни Л" 2. При сопоставлении констант, характеризующих [c.83]


Смотреть страницы где упоминается термин Крекирование: [c.127]    [c.31]    [c.38]    [c.106]    [c.77]    [c.139]    [c.208]    [c.306]    [c.73]    [c.61]    [c.87]   
Физическая химия Том 1 Издание 4 (1935) -- [ c.486 ]




ПОИСК







© 2025 chem21.info Реклама на сайте