Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства кристаллов с водородными связями

    Молекулярные кристаллы. Структурными единицами в кристаллах этого типа служат молекулы, связанные друг с другом силами Ван-дер-Ваальса или силами водородной связи. Малая энергия межмолекулярных связей определяет своеобразие свойств кристаллов этого типа. Их характеризует низкая энергия кристаллической решетки и связанные с этим малая механическая прочность, низкие температуры плавления и высокая летучесть. Молекулярные кристаллы не проводят электрический ток (диэлектрики) и обладают низкой теплопроводностью. [c.76]


    Наличие неподеленных пар электронов у кислорода и смещение обобществленных электронных пар от атомов водорода к атому кислорода обусловливает образование водородных связей между кислородом и водородом. Водородные связи обусловливают ассоциацию молекул воды в жидком состоянии и некоторые ее аномальные свойства, в частности, высокие температуры плавления и парообразования, высокую диэлектрическую проницаемость, максимальную плотность при 4°С, а также особую структуру льда. В кристаллах льда молекула воды образует четыре водородные связи с соседними молекулами, что приводит к возникновению тетраэдрической кристаллической структуры. Расположение молекул в таком кристалле отличается от плотной упаковки молекул, в решетке много свободных мест, поэтому лед имеет относительно невысокую плотность. [c.83]

    Спектры растворов, жидкостей и кристаллов могут служить важным источником сведений о межмолекулярном взаимодействии, о его тонких деталях. Сравнивая величину низкочастотного сдвига при растворении вещества в серии растворителей, можно определить, как изменяется энергия межмолекулярного взаимодействия веществ с растворителем, электронно-донорные свойства растворителей и др. Особое значение при изучении межмолекулярного взаимодействия приобрела спектроскопия водородной связи. [c.178]

    Форма и симметрия снежинок. Великолепная гексагональная симметрия кристаллов снега, фактически бесконечное разнообразие их форм и естественная красота делают их превосходными примерами симметричных образований. Чарующее впечатление от формы и симметрии снежинок выходит далеко за пределы научного интереса к их образованию, разнообразию и свойствам. Морфология снежинок определяется их внутренней структурой и внешними условиями их образования. Однако вызывает удивление тот факт, как малы нащи сведения о достоверном механизме образования снежинок. Безусловно, хорошо известно, что гексагональное размещение молекул воды, обусловленное водородными связями, ответственно за гексагональную симметрию снежинок. Но пока остается загадкой, почему имеется бесчисленное множество различных форм снежинок и почему даже ничтожные отклонения от основного мотива снежинки точно повторяются во всех шести направлениях. [c.42]

    Твердые вещества, наиболее пригодные для адсорбции, отличаются высокой пористостью, имеют хорошо развитую поверхность с большой эффективной площадью. В качестве адсорбентов применяют такие материалы, как уголь, глинозем, силикагель. Некоторые свойства поверхности, например, расположение кристаллов или присутствие на поверхности атомов кислорода со свободной электронной парой, способной создавать водородные связи, обусловливают хемосорбцию определенных видов молекул. Точная природа этих свойств поверхности еще недостаточно ясна, поэтому необходимы дополнительные исследования, позволяющие создать матери- [c.156]


    Ассоциация молекул и структура жидкостей. Молекулы таких жиД Хостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)2, (НзО) , (СНзОН)2 и т. д. Однако ассоциация на этом не останавливается, образуются тримеры, тетрамеры и т. д., пока тепловое движение не разрушает образовавшеюся кольца и]ш цепочки молекул. Энергия на одну водородную связь в таких цепочках возрастает с числом молекул в димере воды 26,4, в тримере 28,4 кДж/моль, Для фтористого водорода в цепочках (НР)2, (НР)з, (НР)4 и (НР)5 и в кольце (НР)б на одну водородную связь приходится 28,9 32,5, 34,6 36,9 и 39,5 кДж/моль соответственно [к-32]. Когда тепловое движение понижено (в кристалле), через водородные связи создается кристал тическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две донорные Н-связи и через два атома Н — две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (б.иижний порядок). Эта структура воды определяет многие свойства воды и растворов. Структурированы и спирты, но по-иному, так как молекула спирта образует одну донорную и одну акцепторную связь. Эта структура разрушается тепловым движением значительно легче. Возможно структурирование и смещанных растворителей, как водно-спиртовые смеси и др. Оказывая особое влияние на структуру воды, водородные связи налагают отпечаток на всю термодинамику водных растворов, делая воду уникальным по свойствам растворителем. [c.274]

    Кристаллы со смешанными связями. Существует большая группа твердых веществ, в кристаллах которых одновременно реализуются разные по типу связи. При оценке свойств такого кристаллического тела необходимо вводить поправку на дополнительное специфическое взаимодействие. Так, в молекулярных кристаллах типа NH3, Н2О, НС1, на ряду с силами Ван-дер-Ваальса действуют и силы водородной связи, следствием чего служит относительное повышение прочности таких твердых веществ, а также температур их плавления. [c.80]

    На практике выделение -парафинов может проводиться как в результате сорбции измельченным твердым карбамидом, обычно применяемым в виде суспензии в растворителе, так и путем смешения нефтепродукта с гомогенны. раствором карбамида, в результате чего из смеси выделяется белый сметанообразный осадок, после фильтрования и сушки превращающийся в кристаллическое вещество. Кристаллы комплекса обладают гексагональной структурой, в которой молекулы карбамида располагаются спиралеобразно и связываются за счет водородных связей между атомами кислорода и азота смежных молекул, повернутых друг относительно друга на 120° и образующих круглый в сечении канал. Важнейшая особенность структуры комплексов — строго фиксированный диаметр этого канала, лежащий в пределах (5-=-6)-10" мкм. Внутри канала легко могут располагаться линейные молекулы парафина (эффективный диаметр молекулы (3,8- -4,2)-10 мкм] и практически не размещаются молекулы разветвленных парафинов, ароматических углеводородов (эффективный диаметр молекулы около 6- 10 мкм) и т. д. Этим свойством карбамидный комплекс напоминает цеолит. По другим признакам аддукт близок к химическим соединениям. Так, карбамид реагирует с углеводородами в постоянном для каждого вещества мольном соотношении, медленно возрастающем с увеличением длины цепочки, причем для различных гомологических рядов эти соотношения также несколько отличаются. Величины мольных соотношений, хотя и представляющие собой дробные числа (табл, 5.23), напоминают стехио-метрические коэффициенты в уравнении закона действующих масс. С возрастанием длины цепочки увеличивается и теплота образования аддукта. Эго, в частности, проявляется в том, что высшие гомологи вытесняют более низкие 1.3 -аддукта. [c.315]

    При образовании водородной связи изменяются межъядерные расстояния в молекуле, связь К-Н удлиняется, изменяется электронная структура молекул. Наличие водородных связей сказывается на ряде физических свойств систем, их спектральных и диэлектрических характеристиках. Жидкости и кристаллы, в которых имеет место образование ассоциатов и сольватов, характеризуются повышенными температурами кипения и плавления. [c.97]


    Соединения с водородной связью по своему строению занимают промежуточное положение между низкомолекулярными и полимерными соединениями. Представление о полимерных соединениях в дальнейшем используется лишь для соединений с ковалентным типом связи, хотя кристалл соли или решетку металла можно было бы рассматривать тоже как полимерное образование. Кроме того, термин полимерные не отражает механизма образования соединения. Ведь для описания типичных свойств таких соединений совершенно несущественно, происходило ли его образование из мономерных единиц путем конденсации или полимеризации (разд. 33.7). [c.356]

    Наибольшую роль образование водородных связей играет в структуре и свойствах кристаллов обычного льда. [c.8]

    Водородная связь возникает в веществах независимо от их агрегатного состояния. Образующие водородную связь атомы стремятся располагаться прямолинейно и дать по возможности наибольшее число взаимных связей. Так, в структуре кристаллов воды каждая молекула воды образует четыре водородных связи с соседними молекулами. Тетраэдрическая структура льда характеризуется неплотной упаковкой частиц и определяет его аномальные физические свойства. При таянии льда рвется около 15% водородных связей и наблюдается переход к более компактной упаковке молекул. При нагревании воды до 40° С рвется около половины водородных связей. В парах воды эти связи практически полностью исчезают. [c.36]

    Водородные связи способствуют образованию разнообразных структур и играют большую роль среди факторов, определяющих геометрические конфигурации и свойства многих химических систем. Эти связи существуют в кристаллах льда и в жидкой воде, стабилизируют спиральную форму молекул белков (наряду с ди-сульфидными связями), обусловливают полимеризацию молекул органических кислот, цепное строение бикарбонатных ионов О О [c.133]

    Свойства воды интересуют научных работников различных специальностей — физиков, химиков, биологов, геологов До настоящего времени не разработана теория жидкого состояния II нет теории, объясняющей удивительные свойства воды, которые обычно классифицируются как аномальные по сравнению с аналогичными свойствами простых жидкостей. Именно этим свойствам обязаны многие геологические особенности Земли и сама жизнь Настоящая монография является первой книгой на русском языке, где систематически рассмотрены свойства молекулы Н2О, свойства пара, свойства различных кристаллов Н2О и свойства воды в жидком состоянии. Одна на глав книги посвящена природе водородной связи, которая наряду с особенностями структуры молекулы воды определяет свойства этой жидкости. [c.2]

    Характерной особенностью межмолекулярных водородных связей является их направленность три атома Л, Н и 5, участвующие в образовании водородной связи, расположены на одной прямой. При этом расстояние Л — Н...В для различных веществ составляет 2,5— —2,8 А. Посредством водородных связей молекулы объединяются в димеры и полимеры. Такая ассоциация молекул приводит к повышению температуры плавления и кипения, увеличению теплоты парообразования, изменению растворяющей способности. Водородные связи обусловливают аномально высокую диэлектрическую проницаемость воды и спиртов по сравнению с диэлектрическими свойствами других жидкостей, молекулы которых имеют дипольные моменты того же порядка взаимную ориентацию молекул в жидкостях и кристаллах параллельное расположение полипептидных цепочек в структуре белка поперечные связи в полимерах и в двойной спирали молекулы ДНК. Благодаря своей незначительной прочности водородная связь играет большую роль во многих биологических процессах. Характерно, что молекулы, соединенные водородными связями, сохраняют свою индивидуальность в твердых телах, жидкостях и газах. В то же время они могут вращаться, переходить таким путем на одного устойчивого положения в другое. Кроме водорода промежуточным атомом, соединяющим два различных атома, может служить дейтерий, который, как водород, расположен на линии А П...В. При такой замене водорода на дейтерий энергия связи возрастает до нескольких десятков джоулей на 1 моль. [c.133]

    Тетраэдрическим расположением водородных связей кристалл льда напоминает алмазоподобную структуру. Но поскольку водородная связь длиннее ковалентной, структура льда получается рыхлой, содержит свободные полости. Этим и объясняют малую плотность льда, а также свойство его образовывать клатраты — соединения внедрения. [c.280]

    МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие двух элек-тронейтральных молекул, вызываемое силами притяжения или отталкивания. Межмолекулярные силы притяжения, называемые иногда силами Ван дер Ваальса, много слабее валентных сил, но именно М. в. обусловливает откло нения от законов идеальных газов, переходы от газообразного состояния к жидкому, существование молекулярных кристаллов, явления переноса (диффузия, вязкость, теплопроводность), тушение люминесценции, уширение спектральных линий, адсорбции и др. М. в. всегда представляет собой первую стадию элементарного акта химической бимолекулярной реакции. При больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, преобладают силы притяжения при малых расстояниях преобладают силы отталкивания. Короткодействующие силы имеют ту же природу, что и силы химической (валентной) связи и возникают при условии, когда электронные оболочки молекул сильно перекрываются. Частным случаем М. в. является водородная связь. М. в. определяет агрегатное состояние вещества и некоторые физические свойства соединений. [c.157]

    Полученные результаты могут быть использованы при разработке теории управления реакционной способностью молекулярных твердых веществ, теории структурных превращений и прогнозирования полиморфизма в кристаллах с водородными связями, для оптимизации атом-атомных потенциалов в них, для понимания роли водородных связей в твердофазных превращениях молекулярных кристаллов. Результаты могут найти применение, в частности, при разработке систем для записи информации на основе молекулярных кристаллов, при модифицировании свойств материалов и лекарственных препаратов без изменения их химического состава. [c.49]

    Дисахариды, как и другие сахара, обладают свойствами хорошо растворяться в воде и образовывать при кристаллизации довольно твердые кристаллы. Эти свойства обусловлены наличием в молекулах значительного числа гидроксильных групп, которые образуют водородные связи с молекулами воды и (в кристаллах) между собой. [c.373]

    Существование водородных связей в воде чрезвычайно благоприятно для жизни на Земле. В водных системах каждый атом водорода ковалентно связан в молекуле воды с одним атомом кислорода (находясь от него на расстоянии 1,1 А) и вместе с тем достаточно сильно связан с атомом кислорода соседней молекулы (расстояние между их ядрами в кристалле льда равно 1,бА). Свойства воды в значительной мере определяются наличием в ней системы связей О—Н О. [c.143]

    На свойства некоторых молекулярных кристаллов, особенно льда, оказывает большое влияние дипольное взаимодействие, называемое водородной связью (см. гл. 8). Хотя водородная связь далеко не так сильна, как ковалентная связь, ее образование оказывает заметное влия- [c.176]

    Хотя для жидкого состояния характерна -отнюдь не такая упорядоченность, как для твердого состояния, во многих жидкостях обнаруживается некоторая степень упорядоченности. Свойства подобных жидкостей, например вязкость и поверхностное натяжение, существенно отклоняются от идеальных, что указывает на образование упорядоченных ассоциатов между молекулами. Например, установлено, что уксусная кислота образует димерные молекулы (рис. 11.5), а вода при комнатной температуре состоит из небольщих групп молекул, связанных между собой водородными связями, подобно тому, как это наблюдается в кристалле льда (см. рис. 10.13). При повышении температуры тенденция к образованию ассоциатов снижается и при температуре кипения вода состоит уже из совершенно изолированных молекул. [c.191]

    За последние годы в структурной химии комплексонатов было введено понятие о циклах ранее не описанного типа, включающих одновременно координационные связи металл — лиганд и Н-связи (не более двух независимых) [603]. Такие циклы возникают, в частности, в кристаллах комплексов металлов с комплексонами, содержащими в составе молекул карбоксилатные или фосфонатные группы. При этом могут возникать внутри- или межмолекулярные водородные связи, включающие в качестве донора протона любой протонированный атом, обладающий протонодонорными свойствами, например атом О молекулы воды, а в качестве акцептора — любой атом, обладающий акцепторными свойствами, например атом О координированной функциональной группы Образование подобных Н-связей приводит к замыканию дополнительных циклов в структуре комплексоната Эти циклы было предложено называть водородными металлоциклами или Н,М- циклами [603] (рис. 2 48) [c.318]

    Сложный вид экспериментальной зависимости г (ОН) от г (00) (рис. 35) показывает, что энергия водородной связи не может быть однозначно определена при помощи парного потенциала взаимодействия, в связи с чем важны поиски но-. вых подходов к проблеме водородной связи. К этому же выводу приводит и анализ свойств льдов. Энергия и равновесная структура кристаллов НаО существенно определяются объемом конденсированной фазы. Зависимость энергии межмолекулярного взаимодействия и структуры кристалла от объема показывает, что особенно существенными в этом случае оказываются коллективные взаимодействия молекул (дальнодействие). [c.91]

    На основании рассмотренных свойств льдов можно сказать, что дальнодействующее взаимодействие во льдах не определяется переходами протонов по линии водородной связи от молекулы к молекуле (протонным беспорядком). Этот вывод следует из того факта, что средние частоты решеточных колебаний кристаллов с дефектами и кристаллов без дефектов близки. [c.91]

    Образование комплексных соединений нормальных парафинов с карбамидом является следствием молекулярно-ситовых свойств последнего [103]. Молекулы карбамида образуют кристаллическую структуру, располагаясь в кристалле по продольным ребрам правильной шестигранной призмы. Расстояние между ребрами 4,8 А. Смежные молекулы ориентированы на 120° друг относительно друга. На ребрах фиксированы центры кислородных атомов. Атомы кислорода прочно связаны с аминогруппами соседних молекул водородными связями. Крепление приводит к образованию из молекул карбамида спиралевидной структуры. [c.468]

    Ассоциация молекул и структура жидкостей и твердых тел. Молекулы таких жидкостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)з, (Н.,0)2, (СНзОН)2, трнмеры, тетрамеры и т. д., пока тепловое движение не разрушит образовавшегося кольца или цепочки молекул. Когда тепловое движение понижено, через водородные связи создается кристаллическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две докорные Н-связи и через два атома Н —две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты, и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (ближний порядок). Эта структура делает воду уникальным по свойствам растворителем. Ассоциация через водородные связи приводит к аномально высоким значениям диэлектрической проницаемости таких жидкостей, как НС , НзО, метанол и др. Водородные связи типа —СО...Н—N1 — [c.139]

    Вследствие полярности молекул вода проявляет высокую активность при различных химических взаимодействиях, является хорошим растворителем для электролитов, которые в воде подвергаются диссоциации. Молекулы воды отличаются способностью к образованию водородных связей, что оказывает влияние па взаимодействие воды с другими веществами и на свойства водных растворов. Молекулы воды способны к образованию допорно-акцеп-горных связей, в которых они являются донорами неподеленных электронных пар ь ислородного атома. Все это обусловливает высокую реакционную и растворяющую снособность воды. В воде растворимы очень многие вещества. При этом часто молекулы (или ионы) растворяемых веществ образуют соединения с молекулами воды. Это явление называется гидратацией. Молекулы воды взаимодействуют также с поверхностью ионных кристаллов. [c.170]

    Необычные свойства воды объясняются ее строением. Молекула воды нелинейна — угол между связями Н—О—Н равен 104°27. Связи Н—О ковалентны, однако они полярны, т. е. некоторый положительный заряд несут атомы водорода, а отрицательный — атом кислорода. Вследствие этого связанный атом кислорода способен притягивать атом водорода соседней молекулы с образованием водородной связи, что существенно повышает общую энергию связи. Таким образом, молекулы в воде ассоциированы. В кристаллах льда водородные связи еще сильнее. В силу высокой полярности молекул Н2О вода является растворителем других полярных соединений, не имея себе равных. [c.101]

    V/ Структура кристаллов и свойства льда. Кристаллы льда принадлежат к геТЕ ональнои системе. В них каждая молекула воды связывается водородными связями с четырьмя другими молекулами воды с двумя молекулами связь осуществляется через атомы водорода этих молекул (рис. 4). Таким образом, во всех случаях положительно [c.8]

    Вещества с молекулярными кристаллическими решетками. Их свойства. Энергия решеток. Молекулярные кристаллы состоят из индивидуальных молекул ( I2, 12. I4, СО2, СдНв, Sg и т. д.). В большинстве органических веществ молекулярные решетки. Межмолекулярные силы в таких решетках малы (дисперсионные, междипольные, индукционные и иногда силы водородных связей). Дисперсионные силы обладают шаровой симметрией воздействия. Поэтому, когда действуют только они, образуется плотнейшая упаковка молекул в кристалле. Так, кристаллы, образованные из одноатомных молекул благородных газов, имеют гранецентрированную кубическую элементарную ячейку, не искаженную каким-либо взаимодействием направленного характера. Другие вещества с более сложными молекулами, в которых атомы связаны ковалентными связями, образуют кристаллы более [c.130]

    Наличие водородных связей сказывается на температурах кипения и плавления (так, метан — газ, а метиловый спирт — жидкость) на растворимости и растворяющей спссобности (вещества с водородными связями легко растворяются друг в друге и не растворяют, как правило, веществ, не имеющих водородных связей) на структуре кристаллов вещества с водородными связями почти всегда образуют в твердом состоянии молекулярные кристаллы на плотности н вязкости веществ. Свойства веществ, образующих водородные связи, в газообразном состоянии значительно отличаются от свойств идеальных газов и т. д. [c.52]

    Хотя водородные связи слабее ковалентных и ионных, они значительно прочнее вандерваальсовых связей и обусловливают ассоциацию молекул воды в жидком состоянии и некоторые аномальные свойства воды, в частности высокие температуры плавления и парообразования, высокую диэлектрическую проницаемость, максимальную плотность при 4 °С, а также особую структуру льда. В кристаллах льда молекула воды образует четыре водородные связи с соседними молекулами воды (за счет двух неподеленных электронных пар у кислорода и двух протонов), что обусловливает возникновение тетраэдрической кристаллической структуры льда. Расположение молекул в таком крис-. талле отличается от плотной упаковки молекул, в решетке много свободных мест, поэтому лед имеет относительно невысокую плотность. При высоких давлениях (выше 200 МПа) обеспечивается более плотная укладка молекул воды и возникает еще несколько кристаллических модификаций льда. При плавлении происходит частичное разрушение структуры льда и сближение молекул, поэтому плотность воды возрастает. В то же время повышение температуры усиливает движение молекул, которое снижает плотность вещества. При температуре выше 4 °С последний эффект начинает превалировать и плотность воды понижается. [c.372]

    Свободная тиоугольная кислота может быть получена действием сильных кислот на крепкие растворы ее солей сперва происходит переход цвета от красного к желтому, а затем в виде маслянистой жидкости частично выделяется H2 S3. Молекула S (SH)2 полярна (р, = 2,13). В кристалле плоские группы S3 [ZS S = 120°, d( S) = 1,69 Ч-1,77 А] соединены друг с другом водородными связями S—H---S [d(SS) = 3,5 3,7 А]. Хотя тиоугольная кислота (т. пл. —27°С) постепенно распадается на S2 и H2S, она все же несравненно устойчивее угольной кислоты. Ее кислотные свойства (Ki = 2-10- , Ki = 7-10 ), также выражены гораздо более сильно. [c.518]

    Было также показано, что у полиаминополикарбоновых хелантов бетаиновое строение может быть частичным, т е наряду с протонированными атомами азота в молекуле комплексона могут присутствовать и депротонированные (ЦГДТА, ДТПА) [203]. Предполагается [40, с 6], что асимметричное бетаиновое строение является следствием стремления к образованию энергетически выгодной системы внутримолекулярных водородных связей. Естественно, что переход кристалл — раствор может приводить к существенному перераспределению водородных связей и, как следствие, к таутомерной перегруппировке Несмотря на строго индивидуальные и жестко фиксированные в каждом отдельном случае конфигурации комплексонов в кристаллическом состоянии, есть основания полагать, что выявление общей основы конформации их молекул, хотя бы как частного случая вариантов, реализующихся в растворе, представляет безусловный интерес для описания их строения и свойств в жидкой фазе [c.312]

    Молекулы воды в кристаллах льда могут быть орие 1гированы различным образом в пределах гексагональной структуры (см. рисунок). Они сохраняют свободу вращения и способны поэтому образовывать водородные связи в разных направлениях. Такого рода неупорядоченность сохраняется и при пониженных температурах, в связи с чем лед — одно из немногих веществ, обладающих остаточной энтропией при абсолютном нуле. Необычным свойством льда является также то, что молекулы воды в кристалле упакованы не наиболее плотным образом, а образуют открытую структуру. Диаметр полости внутри шестиугольника, проходящей также через центры шестиугольников, расположенных ниже, составляет приблизительно 0,06 нм. [c.247]


Смотреть страницы где упоминается термин Свойства кристаллов с водородными связями: [c.137]    [c.124]    [c.137]    [c.34]    [c.519]    [c.179]    [c.2]    [c.177]    [c.238]   
Смотреть главы в:

Водородная связь -> Свойства кристаллов с водородными связями




ПОИСК





Смотрите так же термины и статьи:

Белки, Водородная связь, внутримолекулярная, Вязкость, Диэлектрические свойства, спектры, Кинетика, Кристаллы, структура. Поверхностное натяжение, Рентгеновские лучи. Связи

Водородная связь свойств

Водородные связи

Кристаллы с водородной связью

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте