Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температурная зависимость характера связи

    Динамическая кристаллохимия, изучающая характер тепловых колебаний атомов и более крупных структурных единиц, их энгармонизм, температурную зависимость, их связь с фазовыми переходами и т. п. [c.190]

    Для расчетов термодинамических параметров используют теоретические уравнения их связи с молекулярными параметрами, полученные на основе модельных представлений, о строении системы [139]. Большим достижением подобных теорий является установление термодинамического сродства смешиваемых компонентов, что позволяет прогнозировать тип критической температуры растворения системы (рис. 4), определяемый характером и знаком температурной зависимости значения второго вириального коэффициента Лг и значения АО [140]. [c.37]


    Одна из наиболее интересных особенностей поведения фуллеренов в растворах связана с необычной температурной зависимостью их растворимости. Абсолютные значения растворимости СбО в разных растворителях различаются, однако ход температурных зависимостей во всех случаях совпадает. Характер температурной зависимости растворимости С60 немонотонный с максимумом значений растворимости при температуре около 280 К (7 °С) и заметно снижается при дальнейшем увеличении температуры. Немонотонная температурная зависимость растворимости присуща только С60 и не наблюдается для других фуллеренов [20]. [c.41]

    На температурной зависимости интенсивности РТЛ могут возникнуть один или несколько максимумов, что указывает на наличие одного или нескольких типов ловушек в данном облученном веществе. Для неорганических веществ эти максимумы в общем случае не связаны с их молекулярной подвижностью. Характерной особенностью РТЛ органических веществ, в первую очередь полимеров, является то, что максимумы свечения на кривой РТЛ находятся в тех интервалах температур, где имеют место различные кинетические и структурные переходы, обусловленные размораживанием подвижности отдельных звеньев и сегментов макромолекул, а также молекулярным движением в некристаллических и кристаллических областях полимера. Интенсивность РТЛ существенно увеличивается, когда возникает подвижность отдельных частей макромолекул. При этом характер температурной зависимости интенсивности РТЛ связан с особенностями структуры полимеров и термомеханической предыстории образцов [9.1]. Для некристаллических полимеров на графиках зависимости интенсивности I излучения от температуры появляются максимумы в областях кинетических переходов. В случае кристаллических полимеров соответствующие максимумы на кривых 1 = 1(Т) появляются в областях кинетических и фазовых переходов, а также и полиморфных превращений. [c.235]

    Для разных полимеров зависимости их коэффициентов теплопроводности от давления различны, но во всех случаях влияние его значительно. Зависимость коэффициента теплопроводности от температуры при различных давлениях имеет одинаковый характер. Числовые значения X разных полимеров при повышении давления увеличиваются, но вид температурной зависимости остается практически неизменным. С повышением давления максимумы на кривых X=f(7 ) для аморфных и частично-кристаллических полимеров сдвигаются в сторону высоких температур. Это связано с [c.259]


    Информацию о связи молекулярного строения и надмолекулярной структуры полимеров с их физическими свойствами обычно получают, изучая их физические превращения (или переходы). К таким превращениям относятся процессы стеклования и плавления. Анализ экспериментальных данных, полученных для разных полимеров, показывает, что оба эти процесса наблюдаются вместе лишь у кристаллических полимеров, содержащих неупорядоченные и упорядоченные области. Из сопоставления температурных зависимостей термодинамического потенциала Ф, коэффициентов термического расширения Р и изотермической сжимаемости Хт следует [10.7], что характер их изменения в области стеклования и плавления полимеров оказывается примерно одинаковым (рис. 10.21). [c.271]

    Сходный характер температурных зависимостей различных теплофизических величин дает основание считать, что между соответствующими температурами перехода и Тлл должна существовать определенная связь. Наличие такой связи является фундаментальной закономерностью, которая свидетельствует об определенной общности кинетического и фазового переходов. [c.272]

    Коэффициент теплопроводности металлов. Количественной теории теплопроводности на сегодня не существует. Это связано со сложными, не поддающимися аналитическому описанию механизмами рассеяния фононов и электронов на примесях и атомах, внедренных в решетку, на вакансиях и дислокациях. Справочные данные могут служить лишь для весьма приближенных оценок, поскольку не представляется возможным простым способом и с необходимой точностью определить физическую и химическую чистоту образца, коэффициент теплопроводности которого очень чувствителен при низких температурах к содержанию примесей и характеру их распределения в металле. На рис. 3.11 приведены температурные зависимости теплопроводности для различных образцов меди, отличающихся химической чистотой. Как следует из рис. [c.232]

    Следствие первого закона Коновалова (иногда это положение называют третьим законом Коновалова) утверждает симбатность в изменениях состава раствора и пара в бинарных системах. Следовательно, в бинарных системах кривые Ух = I (х ) не могут иметь экстремумов. Определенную информацию могут дать сопоставления характеристик фазового равновесия с другими термодинамическими свойствами системы, которые определяют в независимом эксперименте. Так, законы (правила) Вревского позволяют связать направление изменений состава пара при изменении температуры и давления и направление смещения состава азеотропной смеси с величинами теплот испарения компонентов. Для оценки согласованности данных разного характера могут служить уравнения, которые связывают температурную зависимость давления пара с теплотами испарения веществ, температурную зависимость коэффициентов активности с теплотами смешения н т. п. [c.125]

    В связи С небольшой теплотой растворения газов в полимерах можно считать, что в основном температурная зависимость проницаемости определяется характером изменения коэффициента диффузии с температурой. [c.47]

    Известно, что при постановке опытов по выращиванию кристаллов из раствора особое внимание обращается на характер температурной зависимости растворимости кристаллизуемого вещества. Знание указанной зависимости способствует выбору условий кристаллизации. В данном случае не является исключением и алмаз. Это связано с тем, что при наличии в реакционном объеме камер высокого давления значительных температурных градиентов и использовании в качестве источника углерода графита вероятность образования перекристаллизованного графита возрастает с увеличением наклона кривой растворимости углерода при повышении температуры. Установлено, что при градиентах температуры в реакционном объеме (8—10) Ю градус/м с использованием растворителей (например, N1 — Мп (1 1)), в которых возможно значительное увеличение растворимости углерода с возрастанием температуры, допустимый перегрев расплава составляет 50—70 К. Выполнение данного условия заметно снижает вероятность появления в зоне роста алмаза перекристаллизованного графита. [c.360]

    При переходе из высокоэластического состояния в стеклообразное модуль упругости вещества возрастает на три-четыре десятичных порядка. При этом наблюдаются перегибы на кривых температурной зависимости удельной теплоемкости, термического расширения, диэлектрической проницаемости и др. В настоящее время твердо установлен релаксационный характер происходящих при стекловании изменений механических [201, с. 563 208, с. 329, 210, с. 280], электрических [211, с. 608 212, с. 412], тепловых [213, с. 1114 214, с. 329], оптических [215, с. 1861 216, с. 489] и реологических свойств [611, с. 527—548]. Переход аморфных веществ в стеклообразное состояние обусловливается изменением межмолекулярного взаимодействия, связанным с образованием и разрывом межмолекулярных связей. Различают стеклование аморфных веществ в статических условиях, например при изменении температуры структурное стеклование), и стеклование в динамических условиях, т. е. при действии на образец периодических внешних полей, в частности электрических или механических [217, с. 805 219, с. 5]. [c.68]


    Однако при измерении х возникают и трудности объективного характера. Они связаны с необходимостью знать величины д, и да. Если плотность кристаллитов рк можно определить, используя данные рентгеноструктурного анализа, то определение плотности аморфных областей ра иногда оказывается довольно трудной задачей. Это связано с тем, что лишь сравнительно небольшое число кристаллических полимеров (полиэтилентерефталат, политрифторхлорэтилен, политетрафторэтилен) может быть получено в аморфном состоянии, когда легко измеряется ра. Для многих кристаллических полимеров определение ра проводится путем экстраполяции температурной зависимости плотности расплава к комнатной температуре. Таким образом, использовать наиболее простой способ определе- [c.44]

    Большой интерес представляет вопрос о температурной зависимости характера связи (см. IV. 2). Экспериментальные исследования электронной плотностп на примере Na l (рпс. IV. 11, с) привели к подтверждению подобной зависимости. [c.275]

    Полученные сведения о численных значениях равновесных соотношений для различных пластовых нефтегазовых систем при переменных Г и р позволяют изучить возможность применения в практических условиях принципа Ле-Шателье, направленного для выявления характера термодинамического процесса (экзотермического и эндотермического), происходящего в залежи. В связи с этим нами построены температурные зависимости константы равновесия (при р = onst) для всех рассмотренных случаев состояния пластовой жидкости. По кривым видно, что принцип Ле-Шателье в конкретных пластовых условиях для реальных нефтегазовых систем хорошо выдерживается, так как с повышением температуры константа равновесия заметно увеличивается, свидетельствуя об экзотермическом направлении процесса. [c.112]

    Исследования связи между характером вязкостно-температурной зависимости как индивидуальных углеводородов, так и фракций нефтяных масел и их химической природой и структурой, проводившиеся в течение ряда лет многими исследователями, позволяют обобщить основные положения этой связи [15 —18]. Наихудшей вязкостно-температурной зависимостью обладают находящиеся в нефтях и в некоторых нефтяных продуктах высокомолекулярные асфальто-смолистые вещества, а также полицикли-ческие углеводороды, особенно полициклические ароматические углеводороды с короткими боковыми цепями. Наилучшей вяз-костно-температурной зависимостью обладают углеводороды, имеющие длинную алифатическую цепь, в частности алкиларома-тические и алкилпафтеновые углеводороды. Увеличение числа, боковых цепей, а также их разветвление ухудшают вязкостнотемпературную характеристику углеводородов. [c.14]

    Для неорганических веществ в кристаллическом состоянии возможности расчета температурной зависимости свойств на основе методов сравнения значительно более ограничены, чем для газов. Здесь сказывается прежде всего больщее многообразие особенностей внутреннего строения кристаллов по сравнению с газами и большее различие характера связи между частицами. Разность значений аналогичных величин для однотипных веществ в кристаллическом состоянии большей частью существенно зависит от температуры. В связи с этим метод разностей в общем случае не может быть рекомендован. Отношения аналогичных величин, вьь ражаемые уравнениями (111,26), (111,28) и другими для достаточно однотипных веществ, мало зависят от температуры. Но это относится преимущественно к высокотемпературным составляющим энтропии и энтальпии (и соответственно других функций), а не к значениям их, отсчитываемым от О К. [c.126]

    Различие в химических свойствах фракций смолистых веществ проявляется и в характере температурной зависимости диэлектрической проницаемости растворов последних. Наблюдается следующая закономерность чем более полярным растворителем извлечена из силикагеля данная фракция смолы, тем при меньших концентрациях раствора на кривых e=f(t) появляется максимум, а в близких концентрациях максимум тем значительнее и тем больше смещен в область высоких температур. Так, например, для раствора фракции смолы ромашкинской нефти, извлеченной ацетоном, наблюдается максимум на кривой е=/( ) уже при концентрации смолы в растворе, равной 14%, причем восходящая ветвь кривой (Ае/Л >0) доходит до +7°, в то время как для фракции смолы этой же нефти, но извлеченной четыреххлористым углеродом, максимум на соответствующей кривой появляется при концентрации смолы, равной 33%, а восходящая ветвь кривой кончается уже при —5°. Сопоставление этих данных с результатами изучения химического состава и свойств соответствующих фракций ясно показывает, что увеличение склонности к ассоциации смолистых веществ в растворе связано с увеличением количества полярных групп и с повышением суммарного содержания в смоле гетероатомов (З+К+О). Чем выше содержание гетеропроизводных органических соединений, тем сильнее и в более широком интервале происходит повышение диэлектрической проницаемости с ростом температуры, обусловленное диссоциацией молекулярных ассоциатов. Эти выводы носят пока качественный характер, поскольку количественные соотношения могут быть установлены только при учете фактора вязкости. [c.187]

    Установлено, что коэффициенты теплопроводности аморфных полимеров (рис. 10.1, 10,2) с повышением температуры до области стеклования увеличиваются, а у частичио-кристалличе-скнх полимеров (рис. 10.3, 10,4) уменьшаются вплоть до температуры плавления. Следовательно, характер температурной зависимости X качественно согласуется с зависимостью для низкомолекулярного неметаллического образца, где теплопроводность рассматривается как результат колебательных движений молекул. В диэлектриках механизм теплопроводности — это колебания атомов около положения равновесия в решетке, иначе говоря, тепловое движение в них связано с распространением плоских упругих волн, длпны которых зависят от степени теплоизоляции и температуры. Эти упругие волны, распространяясь от горячей части полимера к холодной, переносят определенную порцию энергии и этим выравнивают температуру образца, что для кристаллических и аморфных полимеров происходит по-разному. Для первых [c.255]

    Радиационная химия изучает хи.мнческие превращения, происходящие при воздействии ионизирующих излучений. Действие всех видов радиационного излучения п конечно.м счете сводится к взаимодействию заряженных частиц с электронами вещества, поэтому химический эффект действия различных излучений в значительной мере одинаков. Наиболее существенное отличие радиационно-химических реакций от фотохимических связано с неизбирагельным характером поглощения ионизирующего излучения. В то время как свет поглощается, если его частота соответствует частоте поглощения молекулы, энергия радиации поглощается всеми молекулами, вызывая акты ионизации и переводя молекулы в возбужденное состояние. Сохраняя все преимущества фотохимического инициировании (слабая температурная зависимость, отсутствие загрязнений в реакционной среде и др.), радиационное инициирование не накладывает каких-либо особых требований на реакционную среду. Эта среда может быть многокомпонентной, непрозрачной, находиться в разных агрегатных состояниях, кроме того, конструкция реактора может быть произвольной. [c.261]

    Большие перспективы открывает применение эффекта Мёссбауэра для исследования свойств специальных сталей, в состав которых всегда входит в той или иной концентрации железо. Такие исследования несут информацию о фазовых (структурных) превращениях в сталях, дают сведения, позволяющие исследовать прочность, износостойкость и так далее. Например, наблюденное в работе [21] аномальное поведение температурной зависимости величины внутреннего эффективного поля на ядрах Fe в интервале температур, совпадающем с температурой хладноломкости для сталей У9А и ст. 10, указывает на изменение характера химической связи при электронном фазовом переходе, который может быть первопричиной перехода стали из пластичного состояния в хрупкое. Исследование сверхтонкой структуры мессбауэровских спектров на ядрах Fe в сплаве Fe + 48,2 ат. % Ni и в чистом железе [22] позволило обнаружить отклонения величины относительных интенсивностей компонентов спектра для образцов, подвергнутых деформации от относительных интенсивностей компонентов спектра, полученного с недеформированного образца, что объясняется влиянием магнитной текстуры прокатки, вызванной кристаллографической текстурой прокатки и рекристаллизации. [c.217]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    Таким образом, основным варьируемым параметром при изучении границы раздела между конденсированными фазами в двухкомпонентных системах является температура, что в некотором смысле сближает подобные границы раздела фаз с поверхностью жидкость — пар (или твердое тело — пар) в однокомшонентной системе, Рассмотрим, следуя примерно тем же путем, как это было сделано в 1 и 2 гл. I, природу температурной зависимости поверхностного натяжения границ раздела между конденсированными фазами и связь поверхностного натяжения с характером межмолекулярных взаимодействий компонентов на межфазной поверхности. [c.82]

    Характер полученной температурной зависимости УЭС угольных электродов свидетельствует о том, что существенное нлияние на УЭС композиционного угольного материала в ис следованном интервале температур оказывает кокс связующего, образующего непрерывную фазу, в которой распределень зерна наполнителя. [c.116]

    Если предположить, что адсорбция происходит только за счет электростатического взаимодействия катионов ингибитора с отрицательно заряженной поверхностью металла через слой молекулярного сероводорода, то поскольку слой сероводорода может только ослабить это взаимодействие, эффективность защиты в этом случае должна была бы несколько снизиться, Следует допустить поэтому наличие специфической адсорбции катионов ингибитора на поверхностном слое сероводорода. Адсорбируясь на слое сероводорода, катионоактивный ингибитор создает энергетический барьер за счет -потенциала, который препятствует подводу ионов гидроксония. Ингибитор таким образом блокирует молекулы сероводорода, уменьшая образование ионов сульфония. Сероводород при этом играет роль не стимулятора коррозии, а ее ингибитора(см.рис.8), Специфический характер связи между слоем сероводорода и катионами ингибитора подтверждается температурной зависимостью ингибируюш его действия (см.рис.24), [c.97]

    В кристаллических П., имеющих цепочечную (8е, Те) или слоистую структуру (нек-рые модификации Аз и 8Ь), зонная структура, а следовательно, ширина запрещенной зоны различны в разных кристаллографич. направлениях, что обусловлено неодинаковым характером хим. связи. Выделяют гомодесмические П. с высокосимметричной структурой (Се, 81, алмазоподобные бинарные и многокомпонентные соед.) и гетеродесмические П. (цепочечной и слоистой структур, напр. 8е, Те, СеАз, СеАзз). Сама величина собств. проводимости П. и ее температурная зависимость в разных [c.57]

    ИК-спектры бьши изучены в интервале от комнатной температуры до температуры плавления. Смеси, полученные после совместного плавления триклинных компонентов, представляют собой ромбические твердые растворы, что и следовало ожидать, поскольку, как известно [81,146,158], изоморфизм в триклинной фазе сильно ограничен (см. раздел 4.1). Известно также [297], что в ИК-спект-рах ромбических н-парафинов наблюдается давыдовское расщепление AV д, а в ИК-спектрах триклинных н-парафинов оно отсутствует. В соответствии с этим, образование ромбических твердых растворов приводит к появлению давьщовского расщепления в их ИК-спектрах. Температурная зависимость величины давьщовского расщепления AV] 2 полосы маятниковых колебаний Hj-rpynn имеет довольно сложный характер. Напомним, что эта величина связана с расстоянием между молекулами. [c.161]

    При расчете электропечей принято пользоваться величинои Л,/Лго, которую называют поправочным коэффициентом изменения электрического сопротивления в зависимости от температуры. В технической документации (каталогах, технических условиях, стандартах) на сплавы для нагревателей обычно приводят значения поправочного коэффициента сопротивления (см. гл. V). Это связано с тем, что пользоваться поправочным коэффициентом удобнее, так как температурная зависимость сопротивления электронагревательных сплавов имеет сложный характер (рис. 76), и ее трудно выразить с помощью т.к.с. [c.8]

    Кьюминс и Ротеман при изучении газопроницаемости сополимера винилхлорида с винилацетатом наблюдали два перехода один при 30 °С (двил<ение ацетатных групп), второй при 77°С (движение сегментов основной цепи). Для полимеров, содерл<ащих водсфод-иые связи (диффузия н-бутанола в найлон),зависимость IgD—l/r в области перехода вырал<ается четырьмя линейными отрезками Характер теплового разрушения структур, образованных водородными связями, довольно сложен и зависит от ряда факторов Большим числом переходов характеризуется такл<е зависимость IgD—1/Г для системы азот — полиэтилентерефталат . Переход полимера из высокоэластического в стеклообразное состояние характеризуется значительным изменением параметров Do и д, входящих в уравнение температурной зависимости диффузии (6.14). При температурах ниже Гс значение Ец уменьшается на 10— 15 ккал/моль, а предэкспоненциальный множитель Do уменьшается на 10—15 порядков. [c.119]

    Способностью поглощать водород обладают все металлы. Количество поглощенного водорода и характер связи водорода с металлом значительно отличаются для разных групп металла. Для таких металлов, как железо, никель, кобальт, серебро, медь, алюминий, платина, часто придшняют термин растворение пли окклюзия водорода в металле. Растворению или окклюзии, как уже было сказано, обязательно предшествует процесс активированной адсорбции и диссоциации молекул водорода на атомы. Зависимость окклюзии водорода различными металлами от температуры сложная. В одних металлах растворимость водорода с увеличением температуры возрастает, тогда как в других — снижается. Для ряда металлов (лтр-ганец, молибден) наблюдаются экстремальные точки па кривой растворимости водорода от температуры. Поэтод1у можно полагать, что знак температурного коэффициента растворимости в том или инод металле зависит от определенного интервала температур. [c.248]

    По результатам измерения электрофизичес1сих характеристик остатков и битумов даже при температуре выше 250 °С в них сохраняются структурные образования. Диэлектрическая проницаемость нефтяных остатков и полученных из ешх битумов при повышении температуры увеличивается. Такое поведение обратно 1Ю-ведению обычных веществ, диэлектрическая проницаемость которых при повышении температуры уменьшается. Характер температурной зависимости диэлектрической проницаемости и тангенс угла диэлектрических потерь свидетельствует о преобладании в остатках и брпумах дипольно-релаксационной поляризации, характерной для молекул с постоянным дипольным моментом. При изменении температуры наблюдается экстремальное изменение диэлектрической проницаемости и тангенса угла диэлектрических потерь. Прохождение этих величин через экстремумы при изменении температуры связано с критическими фазовыми переходами (образованием новых фаз). Структурные образования сохраняются и при растворении нефтяных остатков даже в таком хорошем растворителе, как бензол. Исследования диэлектрических характеристик бензольных растворов компонентов нефтяных остатков и битумов показали, что между смолами и асфальтенами проявляются более сильные взаимодействия, чем между отдельными частицами только смол или асфальтенов. Мольная поляризация комплекса из смол и асфальтенов может периодически изменяться. Величина этих изменений определяется мольным соотношением между смолами и асфальтенами и является кратной 0,25 моля асфальтенов. Аналогичная картина наблюдается и при изменении концентрации асфальтенов в системе масла—смолы—асфальтены. [c.756]

    Характерно, что аналогичное поведение наблюдается и при исследовании температурной зависимости изменения веса образцов (см. рис. 8). То есть аналогичный характер изменешш двух разных по своей природе физических величин (появление полос поглощения и изменение веса образцов) в зависимости от атмосферы кристаллизации позволяет считать, что наводимое УФ-излучением поглощение связано с образованием в монокристаллах точечных дефектов за счет испарения одного из компонентов кристаллизуемого вещества. [c.83]

    Все полученные результаты позволяют сделать следующие выводы 1. Скорость роста трещин в резинах в присутствии агрессивной среды определяется скоростью химического взаимодействия среды с полимером. 2. Условия испытаний (s= onst или a= onst) не оказывают заметного влияния на температурную зависимость процесса. Энергия активации процесса разрушения полимера в агрессивной среде в сильной степени зависит не только от характера химического взаимодействия со средой, но йот адсорбционных явлений, поскольку эта реакция гетерогенна. Данные по влиянию агрессивных сред на вулканизаты СКС-30-1 показывают, что в газообразном H I, действующем на поперечные связи О—Ме, величина энергии активации больше, чем в озоне, и равна 9,5 ккал/моль (а=200%). Кажущаяся энергия активации химического взаимодействия НС1 с полимером в водном растворе должна быть более высокой, чем при взаимодействии полимера с газообразным H I, так как она складывается из энергии активации дегидратации НС1 (по имеющимся данным , она равна 8,6 ккал/моль), энергии активации дегидратации активных центров полимера и энергии активации взаимодействия дегидратированного НС1 с полимером. Кажущаяся энергия активации процесса разрушения резин в растворах СН3СООН как при малых, так и лри больших деформациях несколько ниже (см. табл. 25), чем в растворах H I, что, по-видимому, связано с меньшей энергией дегидратации молекул уксусной кислоты и с лучшей ее адсорбцией на полимере. [c.354]

    Существенно, что после испаренич растворителя вулканизационная структура восстанавливается, а пленки, полученные из раствора, имеют такие же физико-механические свойства, как и исходные вулканизаты [67]. Вулканизационная структура при этом образуется в результате межмолекулярного взаимодействия полярных солевых групп. Физический характер этого взаимодействия подтверждается тем, что вулканизацию карбоксилатных каучуков можно провести и гидроксидами одновалентных металлов [61 68]. Соединение групп —СООНа и —СООЫ в устойчивые при комнатной температуре агрегаты было показано экспериментально при исследовании температурной зависимости динамических свойств вулканизатов [4]. Кроме того, в вулканизационных структурах металлооксидных вулканизатов карбоксилатных каучуков обнаружено большое число слабых связей. Об этом свидетельствует (помимо отмеченной термолабильности) быстрое снижение прочности вулканизатов при повышении температуры, высокая скорость релаксации напряжения, течение вулканизатов под нагрузкой при растяжении и сжатии, быстрое накопление остаточных деформаций [24, с. 15, 62, 69]. [c.160]

    Изменение энтальпии образования моля контактов между элементами структуры в гелях казеина, рассчитанное по уравнению Пурадье с использованием данных но температурной зависимости модуля быстрой эластической деформации геля, составляет 3—4 ккал молЪ. Причина несовпадения величин энтальпий плавления геля и образования моля контактов заключается в том, что гелеобразование происходит в результате взаимодействий как эндотермического (гидрофобные взаимодействия неполярных аминокислотных остатков), так и экзотермического характера (водородные связи). [c.143]

    Исследование динамических свойств фенол-формальдегидной смолы (Ф-ФС) с гексаметилентетрамином (ГМТА) в качестве отвердителя в интервале температур 300—550° К показало, что характер температурных зависимостей Е и tg б позволяет проследить переходы Ф-ФС при нагревании из стадии резола в резитол и резит (рис. 4). В резольной форме Ф-ФС представляет собой линейный полимер со сравнительно низким динамическим модулем ( = 4500 кГ/см ). В процессе отверждения при переходе из стадии Л в стадию В значение динамического модуля увеличивается более чем в 4 раза. Наконец, при переходе Ф-ФС из стадии В в стадию С происходит дальнейшее увеличение густоты пространственной сетки и значение динамического модуля возрастает до 29 000 кГ1см . В каждом температурном интервале перехода Ф-ФС из одной стадии в другую фактор механических потерь проходит через отчетливо выраженный максимум. Изучение температурных зависимостей динамических характеристик Ф-ФС, отвержденной в течение 50 минут при +150° С, показало, что отчетливо проявляется лишь одна область резкого изменения и tg б. По-видимому, она связана с изменением подвижности участков макромолекул между первичными узлами густой пространственной сетки. О значении условной температуры проявления данной области релаксации можно судить, проведя касательную к восходящей кривой механических потерь (рис. 5). [c.566]


Смотреть страницы где упоминается термин Температурная зависимость характера связи: [c.262]    [c.207]    [c.164]    [c.324]    [c.112]    [c.265]    [c.140]    [c.140]    [c.304]    [c.196]    [c.174]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Связь характер



© 2025 chem21.info Реклама на сайте