Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень усиления эластомеров

    Природа связей полимер — наполнитель и их роль в усилении эластомеров рассмотрена Репером [463], на основании анализа деформационных свойств показавшего, что прочность существующих в вулканизатах связей характеризуется весьма широким спектром сил. Из данных о набухании наполненных систем можно раздельно определить концентрацию физических связей (сцеплений) - макромолекул с поверхностью, ограничивающих степень набухания, и число химических поперечных связей. [c.252]


    Строго говоря, свойства композиции зависят не только от индивидуальных свойств двух компонентов и их относительного содержания, но и от размеров, формы, степени агломерации компонента, находящегося в меньшем количестве, и адгезии между наполнителем и матрицей. Наполнители можно разделить на две основные группы — порошкообразные и волокнистые. Порошкообразные наполнители обычно называют просто наполнителями, а при высокой межфазной адгезии — усиливающими наполнителями. Волокнистые наполнители, как правило, относят к усиливающим, так как волокна воспринимают основную часть приложенной к образцу нагрузки. В этой главе рассматриваются матрицы, которые при рабочих температурах являются преимущественно жесткими, а не эластичными (усиление эластомеров см. в гл. 10). Порошкообразные наполнители до сих пор привлекали меньшее внимание по сравнению с волокнистыми, поэтому их рассмотрению отводится больше места. [c.309]

    Среди неорганических наполнителей, используемых в производстве резины, наиболее эффективными усилителями являются высокодисперсные кремнекислоты и их соли. Как и для других усиливающих наполнителей, степень дисперсности пигмента является наиболее важной характеристикой, по которой оценивается его усиливающее действие Обычно пигменты со среднечисленным размером частиц меньше 50 мк и (или) удельной поверхностью более 50 м г считаются усиливающими. Усиление эластомера, однако, преследует практические цели и может быть определено как улучшение одного или нескольких свойств его при введении какого-либо ингредиента, обеспечивающее большую применимость эластомера в данной области его использования . Такое определение усиления не ограничено физическими свойствами пигмента, а тесно связано с характеристиками вулканизата. [c.341]

    Усиление зависит от ряда характеристик дисперсной фазы и системы каучук—наполнитель размера и пол и дисперсности частиц наполнителя, их формы и удельной поверхности, распределения частиц наполнителя в каучуке, природы и силы взаимодействия между каучуком и наполнителем. Сравнение механических свойств наполненных эластомеров обычно принято проводить при одинаковом объемном содержании наполнителя. Уменьшение размера частиц всегда приводит к увеличению удельной поверхности наполнителя, но она может быть в разной степени развитой и при одинаковом размере его частиц, что определяет количество адсорбционных, контактов между каучуковой фазой и наполнителем. [c.131]


    Влиянне свойств эластомера на адгезию между компонентами и прочность наполненных Систем. Для оценки влияния полярных групп в эластомере на эффект усиления испытаниям подвергали как смеси нитрильных каучуков с сажей ДГ-100, так и наполненные сажей вулканизаты [31]. Сравнивались вулканизаты с одинаковой степенью поперечного сшивания Мс — 3700). [c.342]

    Усиление определяется количеством наполнителя, размерами и степенью агрегации частиц и химией поверхности наполнителя. В этой главе рассматривается влияние указанных характеристик на физические и механические свойства эластомеров. Рассмотрены также существующие термодинамические и вязкоупругие теории усиления. [c.253]

    Механизм усиливающего действия наполнителей в эластомерах и пластических массах различен [50]. Для эластомеров характерной особенностью наполнения сажей является образование его цепочечных структур в полимерной среде. Догадкиным и сотр. установлено, что чем больше степень развития цепочечной структуры наполнителя, тем сильнее проявляется эффект усиления [24]. Усиливающее действие цепочечных структур объясняется тем, что они являются матрицей, на которой ориентируются молекулы каучука. Кроме того и сами по себе цепочечные структуры являются фактором усиления каучука, поскольку связи между частицами наполнителя в цепочечных структурах являются весьма прочными вследствие высокой энергии взаимодействия частиц в местах их контакта [50]. При деформации эластомера связи каучук - наполнитель разрываются и легко восстанавливаются в новых положениях, это способствует выравниванию локальных напряжений и является дополнительной причиной повышения прочности наполненных резин. Усиление наполненных эластомеров связывают также с тем, что введенный наполнитель удлиняет путь разрушения, так как оно идет преимущественно на границе раздела наполнитель - каучук, соответственно возрастает и работа разрушения. Согласно [50], увеличение работы разрушения, отнесенной к единице объема при введении наполнителя можно принять за основную характеристику усиливающего действия наполнителей в полимерах. [c.38]

    Исследовали динамические и механические свойства наполненных асбестом сшитых полиуретанов различной степени отвердения [39], а в [40] рассмотрен принцип усиления резин на примере полиуретановых эластомеров, содержащих органический (эпоксидную смолу) и неорганический (стеклянные шарики) наполнители. Сделано заключение [40], что адгезия между эластомером и наполнителем не является основным фактором в усилении наполненной системы, хотя и необходима для усиления. Влияние, в частности, наполнителей на свойства вулканизатов уретанового каучука исследовали в работе [41]. [c.101]

    Согласно изложенным выше соображениям, полярность эластомеров не является непосредственной причиной изменения эффективности их межфазного взаимодействия с поликапроамидом. Поскольку нитрильные адгезивы различаются по степени дисперсности, можно ожидать, что именно этот фактор оказывает решающее влияние на интенсивность диффузии через границу раздела фаз. Действительно, содержание фракций с молекулярной массой, меньшей 25-10, составляет 91,5% для СКН-18 14,6% для СКН-26 и 9%-для СКН-40 [561]. Понятно, что в соответствии со вторым законом Фика диффузионный массообмен интенсифицируется при снижении молекулярной массы диффузанта. Поэтому из трех перечисленных нитрильных эластомеров максимальную прочность адгезионных соединений должен обеспечивать СКН-18. Однако влияние молекулярной массы проявляется прежде всего при повышенных температурах, способствующих усилению подвижности макромолекул. Как следствие, зависимость, приведенная на рис. 48,2, почти параллельна оси абсцисс. В этом убеждают также данные рис. 50, относящиеся к комнатной температуре. С ростом последней зависимость, как и следовало ожидать, приобретает монотонно возрастающий характер (рис. 51) вследствие повышения гибкости макромолекул. В меньшей степени этот эффект характерен для эластомера с максимальным содержанием нитрильных групп (рис. 50,3), что служит дополнительным доказательством справедливости рассматриваемых представлений. [c.116]

    В середине 40-х годов Гут [346] и Смолвуд [842] предложили уравнение, связывающее степень усиления эластомера с концентрацией наполнителя, нашедщее щирокое применение [183,496, гл. 4]. Наиболее известная форма уравнения следующая  [c.273]

    Взаимопроникающие полимерные сетки (ВПС) представляют собой уникальный тип полимерных смесей, получаемых при набухании сшитого полимера (1) во втором мономере (2) в присутствии сшивающих агентов и активаторов и последующей полимеризации in situ мономера 2 [861, 864]. Термин взаимопроникающая сетка представляется вполне удачным, так как можно представить себе, что в предельном случае высокой совместимости сшитых полимеров 1 и 2 обе сетки являются непрерывными и проникающими одна через другую в пределах всего макроскопического образца . Если компоненты 1 и 2 представляют собой различные по химической природе полимеры, то, как и в случае других типов полимерных смесей, благодаря несовместимости компонентов происходит их разделение на отдельные фазы [861, 864, 871—874]. Но даже и при этих условиях оба компонента остаются в достаточной степени перемешанными, а размеры фазовых доменов составляют несколько сотен ангстрем. Если при температуре эксплуатации один из полимеров является эластомером, а другой пластиком, то их комбинация благодаря синергизму действия обладает свойствами либо усиленного эластомера, либо ударопрочного пластика — в зависимости от того, какая фаза преобладает [201, 865, 874, 404]. Из всех типов полимерных смесей, рассматриваемых в этой монографии, наиболее близкими к ВПС являются привитые сополимеры. [c.206]


    Хотя верно утверждение, что разрушение любого тела начинается со слабого места, тем не менее более строгим является представление, что зависящее от времени и температуры вязко-у1 ру ое течение материала в вершине микротрещины определяет х р тер распространения трещины разрушения [812, 847] (см. р З . 1.6). Халпин и Бики [354] рассмотрели разрушение усилен-эластомеров с точки зрения вязкоупругого течения. Как по-к4зщкз, на рис. 10.15, огибающая разрывов саженаполненных образцов бутадиен-стирольного каучука зависит от степени их уси- [c.264]

    Если эластомер действительно прочно связан или адсорбирован на поверхности наполнителя, то подвижность его макромолекул, по-видимому, должна быть ограничена. В частности, как температура стеклования, так и термический коэффициент расширения, а также свободный объем должны, по-видимому, зависеть от степени усиления. Как ни странно, эти свойства, как оказалось, сравнительно умеренно зависят от степени наполнения. Так, Краус и Грувер [498] обнаружили, что увеличение бутадиен-стирольного сополимера на каждые 10 ч. углеродной сажи, приходящейся на 100 ч. каучука, составляет только 0,2 °С, а термический коэффициент расширения полимерного компонента в высокоэластической области не зависит от количества наполнителя. Хотя отмечено [1002], что Tg силиконового каучука возрастала на 8°С при введении 40 ч. усиливающего кремнезема на 100 ч. каучука, тем не менее этот эффект также следует считать довольно умеренным. [c.266]

    В таблице 2.17 весьма интересны результаты, полученные при испытании смесей и резин из каучука СКИ-3, физически модифицированного ультрадисперсными наполнителями за счет синтеза в эластомерной матрице энергонасыщенных частиц размером до 10 м [18]. В качестве энергонасыщенных частиц выступают сульфаты или карбонаты кальция и бария. При исследовании образцов изопренового каучука, модифицированных ультрадисперсными частицами минеральных наполнителей, было установлено, что синтез "in situ" 0,4-0,8% масс, на 100 масс. ч. каучука ультрадисперсных частиц обусловливает значительное изменение макроструктуры эластомера, способствует усилению протекания ориентационных и кристаллизационных процессов. Кристаллизация при растяжении начинается в модифицированном каучуке при меньших (на 50-150%) удлинениях, а степень кристалличности при пониженных температурах на 20-30% больше, чем в немодифицированных. Именно структурные изменения обусловили повышение в 4-10 раз когезионной прочности наполненных резиновых смесей, на 40-60% физико-механических показателей резин, снижение гисте-резисных потерь. Как видно из таблицы 2.17, по большинству [c.43]

    В результате гетерогенной вулканизации в зависимости от характера химических реакций можно получить в принципе не только гетерогенную, но и гомогенную вулканизационную структуру. Улучшение свойств резин в последнем случае объясняется более эффективным нагружением всех цепей сетки вследствие сравнительно узкого распределения их по размерам. Улучшение свойств резин с гетерогенной сеткой связано, кроме того, с эффектом усиления дисперсными частицами — полифунициональными узлами сетки, а также наличием межмолекулярных, сорбционных ( слабых ) вулканизационных связей. Свойства резин с гетерогенной сеткой зависят от числа межфазных химических связей, размера и внутреннего строения частиц дисперсной фазы, степени сшивания эластической среды и молекулярного строения эластомера. [c.129]

    При анализе зависимости фрикционных свойств эластомеров от степени поперечного сшивания было еще раз показано", что любое уменьшение трения, которое можно было бы приписать усилению "вулканизацин, в действительности обусловлено вторичными эффектами, которые непосредственно связаны с увеличением жесткости. Увеличение жесткости вызывает уменьшение фактической площади контакта, а следовательно, и коэффициента трения. Энергия активации, необходимая для преодоления адгезии каучука к трущейся поверхности, практически не зависит от степени вулканизации. [c.107]

    Э( )фективный путь снижения внутренних напряжений — усиление релаксационных процессов на границе пленка — подложка. Это достигается, в частности, применением под покрытия из жесткодепных полимеров (как аморфных, так и кристаллических) специального подслоя (грунта) из эластомеров, например каучуков. Релаксирующий эффект возрастает с увеличением толщины и пластичности материала грунта (рис. 4.26). Он зависит также от степени химического сродства полимеров грунтовочного и верхнего слоев. Для каждого покрытия существует предельное значение толщины грунтовочного слоя, при котором внутренние напряжения полностью релаксируют. В случае применения каучуков независимо от типа верхнего покрытия эта толщина находится в пределах 20—50 МКМ. [c.111]

    Механические свойства пластифицированных и пигментированных покрытий не однозначно зависят от содержания модифицирующего компонента (рис. 4.4). При этом в случае пигментированных плевок немаловажное значение имеют химическая природа, размер и форма частиц пигмента, а также его энергетическое взаимодействие с пленкообразующим веществом. Чешуйчатые и волокнистые пигменты и наполнители в отличие от наполнителей с изометрической формой частиц в большей степени усиливают пленкообразователи и нередко способствуют лучшей деформируемости пленок. Эффект усиления резче проявляется у аморфных полимеров, чем у кристаллических. В области малых концентраций наполЕгителей в пленках из эластомеров зависимость модуля [c.71]


Смотреть страницы где упоминается термин Степень усиления эластомеров: [c.265]    [c.252]    [c.167]   
Полимерные смеси и композиты (1979) -- [ c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Усиление

Эластомеры



© 2025 chem21.info Реклама на сайте