Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диссоциация при столкновениях ударная

    Механизм мономолекулярного распада в простейшем виде описывается теорией Касселя [156. Молекулы обмениваются энергией в бимолекулярных столкновениях если молекула приобретает запас энергии, достаточный для диссоциации, то она будет распадаться в промежутке между столкновениями, так как внутримолекулярное перераспределение энергии обеспечит благоприятные условия для распада. При фиксированной энергии над порогом диссоциации среднее время жизни возбужденной молекулы увеличивается с возрастанием сложности молекулы, потому что одновременно с этим увеличивается число каналов, по которым энергия распределяется по различным колебаниям молекулы. За исключением области очень высоких давлений, диссоциация двухатомных молекул, обладающих достаточным запасом колебательной энергии, происходит эффективно, так как период колебаний равен примерно с, а частота соударений при 1 атм около 10 в секунду. Разложение более сложных молекул часто показывает асимптотический первый порядок реакции при сильном увеличении давления в таком случае время жизни возбужденных молекул значительно превосходит промежуток времени между соударениями, а распределение возбужденных частиц по уровням близко к термодинамически равновесному. В предельном случае нулевого давления кинетика распада соответствует второму порядку, так как скорость лимитируется активацией в бимолекулярных столкновениях если в процессе столкновения молекула приобретает достаточную энергию, то она почти наверняка диссоциирует в промежутке между столкновениями. Молекулы, энергия которых недостаточна для распада, характеризуются обычным больцмановским распределением энергии (кроме условий опытов в ударной трубе при низких давлениях), и скорость реакции в целом определяется скоростью, с которой молекулы приобретают энергию выше критической, энергии диссоциации. [c.306]


    Современная практика ставит также перед теорией новые задачи, решение которых связано с детальным изучением роли разных видов внутримолекулярного движения и различных процессов передачи энергии при столкновениях в кинетике мономолекулярного распада. Важным разделом этой проблемы является, в частности, последовательный учет ограничений, налагаемых сохранением вращательного момента на спонтанный распад молекул и связанное с этим уточнение предэкспоненциального множителя константы скорости мономолекулярного распада в пределе высоких и низких давлений. К указанной группе новых задач относится также изучение диссоциации и распределения колебательной энергии двухатомных и более сложных молекул в сильных ударных волнах (высокотемпературные особенности мономолекулярного распада) или в условиях избирательного действия внешних источников энергии на реагирующий газ (лазерная или химическая активация). Большой теоретический и прикладной [c.3]

    Неоправданность ряда экстраполяций констант скоростей реакций н соответствии с температурными зависимостями, полученными в опытах при сравнительно низких температурах, видна из того, что при T IO тыс. градусов экстраполированное время диссоциации Оа при столкновении с О меньше времени, необходимого для образования фронта ударной волны, что не имеет смысла. При высоких температурах процессы возбуждения колебаний и диссоциации Ог происходят во фронте ударной волны, что указывает на необходимость новых подходов к решению поставленной задачи. [c.55]

    Значение константы скорости диссоциации азота в столкновениях N2—Аг, играющих основную роль в начальной зоне ударной волны,, известно [7, 8], поэтому можно с уверенностью рассчитать изменение температуры, плотности, а также концентраций молекул N2 и атомов N за фронтом ударной волны. Далее надо учесть, что заселенность электронного состояния B si(Ni)(реакции (III), (IV)) приходит в локальное-равновесие с основным состоянием иона за время порядка времени жизни возбужденного состояния, составляющее —0,04 мк/сек. Это время гораздо меньше характерного времени реакций (I) и (II) (если использовать во втором случае значение ( 21)3), следовательно, можно считать, реакции (III) и (IV) находящимися в равновесии. Тогда значение кол-- [c.158]

    Гл. 1 этой книги можно в известной мере рассматривать как своеобразное подведение итогов целого периода экспериментальных исследований распада небольших молекул в ударных волнах. Первая задача этого периода заключалась в том, чтобы подавить всевозможные вторичные процессы и в наиболее чистых условиях получить константу скорости мономолекулярного распада ка. Вторая задача состояла в том, чтобы на основании измеренной зависимости от плотности и температуры получить сведения о механизме активации исходных молекул. Поскольку в настоящее время нет достаточно развитой теории обмена энергией при столкновениях возбужденных многоатомных молекул, механизм активации обычно моделируется путем задания функции распределения для переданной энергии. Здесь детально рассмотрены два предельных механизма механизм сильных столкновений и механизм ступенчатого возбуждения. Известно довольно много приближенных теорий, основанных на модели сильных столкновений. Наиболее распространенной среди них является теория Райса — Рамспергера — Касселя — Маркуса (РРКМ). В настоящее время значительный интерес представляет исследование различных отклонений от теории РРКМ, связанных главным образом с тем, что константу скорости превращения активных молекул нельзя считать зависящей только от полной энергии молекулы, а необходимо учитывать динамику внутримолекулярного перераспределения энергии. В книге эти вопросы освещены явно недостаточно, и, чтобы восполнить этот пробел, читателю можно рекомендовать монографию Никитина [2], а также работы Банкера (например, [3]). Другое весьма общее ограничение направления, использующего предположение о сильных столкновениях, отмечено в работах Кузнецова [4] и связано с тем, что с повышением температуры все больше нарушается равновесное распределение по внутренним степеням свободы частиц в процессе их диссоциации. Тем не менее имеются случаи, когда даже при сильном отклонении от равновесия возможно описание кинетики реакции на основе представления о равновесной константе скорости. Если среди распадающихся молекул происходит быстрый обмен колебательными квантами, то неравновесность выражается лишь в том, что система характеризуется не одной, а двумя или несколькими колебательными температурами. При температурах ниже некоторой критической температуры То константа скорости мономолекулярного распада определяется кинетикой переходов на верхние колебательные уровни, где обмен колебательными квантами не играет существенной роли, и только для таких температур константа скорости может быть вычислена [c.6]


    В тех случаях, когда качественный и количественный анализ по кластерным ионам затруднителен, они могут быть преобразованы в молекулярные или квазимолекулярпые ионы с помощью ударной диссоциации (диссоциация при столкновениях) в области высокого давления. [c.23]

    Столкновение плоских ударных волн с детонирующими газовыми смесями сопровождается рядом явлений, зависящих от интенсивности ударных иолн. Слабые волны проходят через эти смеси, вызывая лишь медленное разложение. С увеличением интенсивности волн наблюдается небольшое увеличение скорости. Волны очень большой интенсивности немедленно вызывают детонацию. Кистяковский, Найт и Малина [99] измерили скорости детонации циана с кислор >дом при различных давлениях в трубах нескольких диаметров. Полученные этими авторами результаты позволили им вычислить величины тенлот диссоциации азота и окиси углерода, которые оказались рав ш-ми 9,76 и 11,11 Эй соответственно, т. е. верхним пределам возможных значений этих величин, если последние определяют спектроскопическим методом, методом электронной бомбардировки или др гими методами. Эти авторы отклоняют псе возражения, основывающиеся на теории детонационных волн или на сущоствонании систематических ошибок, связанных с мгновенными неравновесными условиями протекания реакции. Согласно Бауэру [100, стр. 95—123] их предположение о равновесии системы весьма сомнительно . Для проверки гипотезы о том, что суммарная энергия реакции не полностью передается детонационной волне или что некоторые из внутренних степеней свободы не могут быть возбуждены в пределах располагаемого интервала времени, Кистяковский и его сотрудники провели опыты с добавлением к детонирующей смеси аргона. Подмешивание аргона привело к ожидаемому изменению скорости детонации, что, по мнению авторов, и опровергает эти гипотезы. [c.141]

    Разработка таких нолуэмпирических методов расчета скоростей ряда важных процессов (возбуждения и диссоциации молекул электронным ударом [135, 136], диссоциативной электрон-ионной рекомбинации и ассоциативной ионизации [127], ударнорадиационной рекомбинации атомов и фрагментов молекул [126, 137], колебательной релаксации [77], термической диссоциации молекул [77, 121, 122], передачи энергии электронного возбуждения при столкновениях [77], ступенчатого возбуждения и ионизации атомов и ударно-радиационной ион-электронной рекомбинации при столкновениях с электронами [124] и с учетом столкновений тяжелых частиц [137], бимолекулярных [78, 81] и мономолекулярных химических реакций [77, 134] и т. д.) показала реальность такого подхода. [c.36]

    Кинетика физико-химических процессов в термически-неравиовесном газе моделируется на различных уровнях (см. второй том справочника). Наиболее приближен к действительности микроскопический уровень, когда среда рассматривается как множество взаимодействующих частиц, движение которых описывается классическими или квантовыми уравнениями. Примером может служить численное решение задачи о возбуждении колебаний и диссоциации двухатомных молекул при столкновении с атомами инертного газа за фронтом сильной ударной волны (О -Аг [77]). На следующем - кинетическом уровне описания среды рассматривается изменение заселенности отдельных уровней энергии молекул (уровневая кинетика). Решение этих задач требует знания уровневых вероятностей, сечений и (или) коистаит скорости исследуемых процессов, здесь - химических реакций. Сведения об уровневых характеристиках ряда реакций приведены в [78,79] уровневые константы скорости можно вычислить с помощью соотношения детального баланса [79,80], если известно распределение энергии в продуктах обратной реакции [81]. [c.245]


Смотреть страницы где упоминается термин Диссоциация при столкновениях ударная : [c.25]    [c.116]    [c.30]    [c.356]    [c.356]    [c.356]   
Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Столкновения



© 2024 chem21.info Реклама на сайте