Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадила сульфид

    Аналогичным образом можно сравнить значение для процессов окисления простых веществ серой, хлором и пр. и найти необходимые условия получения простых веществ восстановлением соответствующих хлоридов, сульфидов и пр. Ниже приведены реакции получения ванадия восстановлением его оксида и дихлорида с помощью водорода  [c.245]


    Показано [116], что ванадий может находиться в трех формах. При малом его содержании (до 1%) он представлен изолированными парамагнитными частицами УО локализованными, видимо, на дефектах 7-оксида алюминия. В случае его большего накопления появляются диамагнитные частицы ванадия, образующего, видимо, фазу сульфида ванадия и покрывающего монослоем поверхность катализатора при содержании 6-10%. При дальнейшем накоплении ванадия (более 10%) образуется сульфид ванадия, близкий к Уз 83. Предполагается, что [c.147]

    Результаты многочисленных исследований минерального состава пластовых вод показывают, что основную долю растворенных веществ составляют хлориды натрия, магния и кальция. Кроме них (в зависимости от месторождения) могут присутствовать иодистые и бромистые соли щелочных и щелочноземельных металлов, сульфиды натрия, железа, кальция, соли ванадия, мышьяка, германия и др. Но в отличие от хлоридов, содержание которых исчисляется процентами и десятками процентов от общего количества растворенного вещества, содержание остальных солей измеряется сотыми, тысячными и еще меньшими долями процентов. В связи с этим минерализацию пластовой воды часто измеряют по содержанию ионов хлора в единице объема с последующим пересчетом на эквивалент натриевых солей. [c.9]

    Обычно для осуш ествления гидрогенизационного обессеривания в качестве катализаторов применяются сульфиды и окислы металлов (никеля, вольфрама, железа, кобальта, молибдена, ванадия, хрома и др.), отложенные на различных носителях или без носителей 1164]. [c.394]

    Даже при малом содержании ванадия возможна коррозия, вызываемая присутствием натрия и калия (натрий попадает в топливо с водой, особенно при транспортировании его водным транспортом). Сульфат натрия Ка ЗО , попадая в камере сгорания в зоны высоких температур, диссоциирует, и сульфат-ион, в свою очередь, также диссоциирует, при этом выделяется триоксид серы и ион кислорода. Последний взаимодействует с оксидной пленкой, и сульфат-ион, в случае нарушения защитной пленки, непосредственно взаимодействует с металлом лопатки, при этом образуются сульфид и оксид металла, а также ион кислорода. Обычно содержание натрия и калия в газотурбинных топливах не превышает 0,0004 %. [c.120]

    Помимо ртути, при добавлении сульфида натрия нз раствора удаляются также соединения хрома, ванадия, молибдена и других металлов, вредных для электролиза, [c.176]

    Получение тиованадата аммония и сульфида ванадия (V). К 5—10 каплям раствора ванадата аммония добавьте избыток раствора сульфида аммония. Что происходит Подкислите полученный раствор разбавленной соляной кислотой (1 6) и наблюдайте выпадение осадка сульфида ванадия (У). Какого он цвета  [c.198]


    Опыт 3, Получение тиосоли и сульфида ванадия (V) [c.242]

    ВИРИРОВАНИЕ ФОТОГРАФИЧЕСКОЕ (тонирование) — превращение черно-белого серебряного изображения в окрашенное с художественной целью или для увеличения плотности и контрастности изображения. В. ф. осуществляют превращением серебра в окрашенное соединение заменой серебра другим металлом, осаждением на серебре соединений другого металла, окрашиванием серебра красителем, изменением дисперсности серебра. Для осуществления В. ф. изображение сначала отбеливают раствором окислителя и галогенида щелочного металла. Образовавшийся галогенид серебра обрабатывают растворами сульфидов для окрашивания изображения в желто-коричневый цвет заменяют серебро золотом, платиной, ураном, свинцом, ванадием и др. Цветовой оттенок зависит от дисперсности серебра, температуры тонирующего раствора, продолжительности обработки. [c.54]

    При образовании некоторых, сульфидов и их аналогов (например, щелочных и щелочноземельных металлов, магния, цинка) выделяется много теплоты, реакция протекает очень бурно, и ампула, особенно стеклянная, разрушается. Поэтому металл следует брать не в виде тонкого порошка, а в виде стружки, мелких гранул или крупки. Щелочные и щелочноземельные металлы и некоторые другие разрушают стекло и загрязняют продукты реакции соединениями кремния. Поэтому их сульфиды получать таким способом нельзя. Этим методом можно получать сульфиды, селениды элементов подгруппы железа, хрома, ванадия, титана, галлия, а также меди, серебра, марганца. В тех случаях, когда вещество пе плавится, обычно после 1—2-часового нагревания прп температуре, рекомендованной в прописях, оно будет неоднородно по составу. Рекомендуется ампулу разбить, вещество растереть в ступке, снова поместить в ампулу, запаять ее, а затем назревать в течение 2—3 ч (можно еще раз не нагревать, но тогда процесс должен длиться 10—15 ч). [c.47]

    Сульфиды щелочноземельных металлов после длительного прокаливания в присутствии следов тяжелых металлов (таллий, марганец, висмут, ванадий и др.) приобретают способность длительно светиться после их предварительного освещения. В зависимости от примеси свечение может иметь различную окраску желто-зеленую, голубую, оранжевую, желтую, красную. Такие составы называются светящимися красками, или фосфорами. Они применяются для светящихся шкал и циферблатов, для дорожных знаков и пр. Сульфиды можно получать восстановлением сульфатов, прокаливая последние с углем при температурах до 800° С  [c.50]

    Позже, уже в начале нашего века, Кларк со своим сотрудником Вашингтоном изучили содержание в различных минералах и горных породах ряда менее часто встречающихся элементов — хрома, ванадия, никеля и др. Оказалось, что соотношение количеств некоторых элементов в минералах часто бывает строго постоянным. Например, количество кобальта бывает всегда в 10 раз меньше, чем никеля. В сульфидах различных металлов содержание селена и теллура обычно в 10—100 раз меньше, чем серы. [c.239]

    Нахождение в природе. Элементы данной подгруппы не имеют собственных значительных месторождений и в виде редких и рассеянных примесей и включений содержатся в рудах и залежах других элементов. Исключение составляет ванадиевое месторождение патронита в Перу. Главным источником ванадия являются железные руды, где содержание ванадия колеблется в пределах от 0,1 до 0,2%. Перуанский патронит представляет собой сульфид ванадия. [c.304]

    Химические свойства. Металлический ванадий при обычной температуре медленно, при нагревании быстрее окисляется на воздухе, проходя через различные стадии окисления. Каждой ступени окисления соответствует характерный цвет получаемых при этом продуктов. В порошкообразном состоянии при нагревании на воздухе или в атмосфере кислорода под давлением ванадий сгорает в УзО ,. Порошкообразный ванадий активнее сплавленного. При нагревании порошкообразный ванадий реагирует также с хлором, с парами брома, серой, азотом, образуя соответственно хлориды, бромиды, сульфиды и нитриды. [c.305]

    Соединения с серой. Ванадий, ниобий и тантал дают с серой различные соединения. Наиболее изученными являются сульфиды ванадия. [c.313]

    При нагревании окислов ванадия в токе сероводорода обра-зуется черный сульфид трехвалентного ванадия сульфид пятивалентного ванадия, тоже черный, получается при нагревании (350° С) трехокиси ванадия с серой. Сульфид пятивалентного ванадия растворяется в сернистом аммонии и в растворах щелочей с образованием сульфосолей, дающих вишнево-красные растворы. Сульфосоли получаются также при растворении пятиокиси ванадия в растворах соответствующих сульфидов или при действии сульфида аммония на растворы ванадата аммония  [c.113]

    Среди соединений со слоистой структурой более всего были изучены дисульфид титана TiS2 и селенид ниобия NbSe , а также сульфиды и диселениды ванадия, сульфиды железа и меди. Рассматривались и соединения более сложного состава, в которые предварительно внедрялись добавки небольших количеств различных металлов (катионов большего радиуса, чем у катиона лития). [c.149]

    Наряду с образованием сульфидов для разделения ионов в количественном анализе широко применяется также осаждение различных катионов в виде малорастворимых гидроокисей. При этом для разделения иоиов используют либо амфотерность некоторых из них, либо различия в растворимости разных гидроокисей. Так, железо отделяют от ванадия, молибдена и алюминия, обрабатывая раствор избытком едкой щелочи. При этом неамфотерная гидроокись железа выпадает в осадок, тогда как остальные указанные металлы вследствие амфотерного или кислотного характера их гидроокисей остаются в растворе в виде анионов (VO.3, ЖоОТ и AIO2). [c.121]


    Основными типами сернистых соединений в ТНО являются высокомолекулярные сульфиды с углеводородной частью парафинового, нафтенового, ароматического и смешанного строения, а также гомологи тиофанов и тиофенов. Молекулярная масса сернистых соединений составляет 250 — 10000. Основная часть сернистых соединений в ТНО соединена с ароматическими и смолисто — ас фальтеновыми структурами, в состав которых могут входить и другие гетероатомы. Проявляется следующая закономерность в рсчспределении гетеросоединений в нативных ТНО с высоким содержанием смол и асфальтенов (то есть с высокой коксуемостью) содержится больше сернистых, азотистых, кислородных и метал— лоорганических (преимущественно ванадия и никеля) соединений. [c.36]

    НИИ и температуре свыше 300° С. Обычно применяются температуры порядка 450—550° С. В качестве катализаторов используются металлы и окиси металлов IV, V и VI групп периодической таблицы, чаще всего базирующиеся на алюминии. Наиболее эффективны окиси хрома и ванадия, окись церия несколько уступает им, а окись тория хотя и проводит дегидрирование, но ароматизирует уже слабо [278, 283]. Были опробованы также никель на алюминии [275], нлатинизированный углерод [284, 285], окиси цинка, титана и молибдена, сульфид молибдена, активированный древесный уголь [279] и хлорид алюминия (металлический алюминий плюс хлористый водород) [286]. [c.103]

    Катализаторы, применяемые в процессах гпдроочпсткн, механически прочны, довольно устойчивы против отравления сернистыми соединениями и могут много раз подвергаться регенерации, не теряя при этом активности. Некоторые катализаторы сохраняют активность даже после того, как количество отложившегося кокса составляет 15% от веса собственно катализатора. Наиболее распространенными и освоенными катализаторами гидроочистки являются различные модификации окислов кобальта и молибдена на алюминии [93, 94], сульфиды вольфрама и никеля [57], окись никеля [57], тиомолибдат никеля [55] и окись ванадия [30]. [c.252]

    На стадии окисления требуются точная регулировка подачи воздуха и тщательное перемешивание реагентов на входе в реактор с катализатором селектокс. Последний представляет собой окснд ванадия (или сульфид ванадия), нанесенный на нещелочной пористый тугоплавкий оксид. Типичный катализатор состоит из 1...30% (желательно 5... 15%) ванадия в оксидной или сульфидной форме. В качестве носителя используют алюминий, титан, кремний, цирконий, а также их различные комбинации, фосфаты кислых металлов, арсенаты, кристаллические или аморфные алюмосиликатные водородные цеолиты. [c.175]

    Сульфид ванадия(IV) VSa получают прн действии кислот на растворы THOBaHaAaTOD(IV), образующиеся при действии (N 4)2 на растворы ванадатов(1У). Сульфиды NbSa и TaSa получаЮт прямым синтезом. [c.520]

    Процесс аурабон фирмы ЮОП предназначен для гидродеметаллизации и деасфальтизации тяжелого сырья. В этом процессе используют рециркулирующий гомогенный катализатор, содержащий сульфиды никеля и ванадия и по зволяющий удалить около 95% асфальтенов и металлов из тяжелого сырья. [c.121]

    В настоящее время известны два больших класса стекол с высокой электропроводностью (полупроводниковые). К первому классу относятся бескислородные халькогенидные стекла, состоящие из сульфидов, селепидов и теллуридов фосфора, мышьяка, сурьмы и таллия. Второй класс составляют кислородные стекла, содержащие большие количества окислов ванадия, вольфрама, молибдена, марганца, кобальта, железа, титана. Наилучшимп технологическими свойствами (хорошей химической стойкостью, высокой температуро1 5 размягчения обладают силикатные стекла с окислами железа и титана. [c.327]

    Очистка бензольных- углеводородов в присутствии водорода осуществляется в газовой фазе над катализатором. Целевыми реакциями очистки являются гидрообессеривание и гидрирование ненасыщенных углеводородов. При получении бензола высокой степени чистоты определяющими являются реакции гидрообессе-ривання, особенно гидрогенолиз наиболее термически стабильного соединения — тиофена. Катализаторами гидрообессеривания могут быть сульфиды или оксиды молибдена, кобальта, вольфрама, никеля, ванадия. В промышленности широко распространен алюмокобальтмолибденовый катализатор. [c.224]

    Предложен метод получения из сульфидов с большими выходами соответствующих сульфоксидов и еульфонов, в котором окислителем является органическая гидроперекись, вводимая в реакцию в стехиометрическом количестве [34]. Сульфиды окисляют в присутствии катализаторов — соединений ванадия, молибдена, титана в растворе бензола, этилацетата или этанола при 50—70° С. Сульфоны легко отделяют от реакционной смеси кристаллизацией или перегонкой. Ненасыщенные сульфиды, например, и-бутил аллил сул ьфид или диаллилсульфид, окисляясь, образуют соответствующие ненасыщенные сульфоксиды и затем сульфоны. Реакция окисления гидроперекисями экзотермична окончание окисления контролируют по прекращению расхода гидроперекиси. При окислении метилфенилсульфида в растворе бензола трет-бутилгидроперекисью в присутствии катализатора, представляющего собой ацетилацетонат двуокиси молибдена, образуется метилфенилсульфон (с выходом 98%) по схеме  [c.57]

    Приборы и реактивы. Водяная баня, Чаше 1ка фарфоровая. Метавакадат аммо ния. Олово (гранулированное), щавелев 1Я кислота. Оксид ванадия (V). Сульф(гг натрия. Цинк. Феррованадий. Железо (порошок). Растворы . лакмуса (нейтрал .-ный) едкого натра (2 н., 4 н.,) едкого кали (40%-ный) серной кислоты (2 и., I 3 плотность 1,84 г/см ) хлороводородной кислоты (2 н. плотность 1,19 г/см > азотной кислоты (1 1) метаванадата натрия или аммония (насыщенный) хлорида бария (0,5 и ) сульфата меди (И) (0,5 н.) нитрата серебра (0,1 н.) нитрата свинца (0, 5 н.) перманганата калия (0,5 н.) пероксида водорода (3% -ный) сульфида аммония или натрия (0,5 н.) ниоОата калня (насыщенный). [c.241]

    Выполнение работы, В пробирку с несколькими кристалликами метаванадата (V) натрия прибавлять по каплям раствор сульфида аммония (или натрия) до появления красной окраски вследствие образования тиованадата аммония (1 Н4)зУ34. К полученному раствору тиованадата аммония прибавлять по каплям 2 н. раствор хлороводородной кислоты до появления бурого осадка сульфида ванадия 285. Выделяющийся при этом сероводород может частично восстанавливать ванадий (V) до ванадия (IV), что вызовет посинение раствора. [c.242]

    Из сернокислых производных для трехвалентного ванадия наиболее характерны зеленая комплексная кислота H V(S0 )2]- H20 (где п = 4 или 6) и ее соли, главным образом типа M[V(S04)j]-12Hj0. Они большей частью окрашены в различные оттенки фиолетового цвета, но дают зеленые растворы. При достаточно высоких концентрациях растворы эти по отношению к кислороду воздуха сравнительно устойчивы и окисляются им лишь медленно. Безводный Уг(504)з имеет желтый цвет и очень медленно растворяется в воде. Около 400 С в вакууме он разлагается по схеме V2(S04)s = SO2 + 2VOSO4. Темно-серый сульфид трехвалентного ванадия является фазой переменного состава (с областью гомогенности в интервале от VSi,ij до VSi,53). [c.490]


Смотреть страницы где упоминается термин Ванадила сульфид: [c.671]    [c.703]    [c.424]    [c.703]    [c.703]    [c.424]    [c.424]    [c.151]    [c.160]    [c.151]    [c.58]    [c.240]    [c.225]    [c.17]    [c.73]    [c.240]    [c.229]    [c.502]    [c.17]   
Аналитическая химия (1973) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий сульфид, образование

Ванадий сульфидом аммония

Ванадия сульфиды

Ванадия сульфиды

ГРУППА СУЛЬФИДА АММОНИЯ Железо, никель, кобальт, цинк, марганец, ванадий, уран, таллий, индий, галлий, алюминий, бериллий, хром, торий, скандий, редкоземельные металлы, цирконий, титан, ниобий и тантал Элементы, образующие при действии (NH4)aS растворимые в кислотах сульфиды Железо, никель, кобальт, цинк, марганец, ванадий, уран, таллий, индий, галлий Железо

Опыт 5. Получение тиованадата и сульфида ванадия

Опыт 5. Получепие тиованадата и сульфида ванадия

Сульфид натрия, реактив на ванадий

Сульфиды ванадия, ниобия и тантала



© 2025 chem21.info Реклама на сайте