Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы гидрообессеривания

    Характеристика катализаторов гидрообессеривания [c.108]

    В нефтеперерабатывающей промышленности применяют несколько видов катализаторов для гидроочистки и гидрирования. Ниже приведены методы определения активности алюмокобальтмолибденового катализатора гидрообессеривания нефтепродуктов и гидрирующего катализатора никель на кизельгуре . [c.177]


    Основные приемы создания катализаторов гидрообессеривания тяжелого дистиллятного и остаточного сырья остаются пока теми же, что для катализаторов переработки дистиллятного сырья. Проводятся уточнения отдельных стадий и совершенствования технологии получения носителей и катализаторов, обусловливающие улучшение основных характеристик при переработке ка них тяжелого сырья. К основным показателям, на изменение которых были направлены исследования, следует отнести а) подбор химического состава б) создание соответствующей пористой структуры носителей и, соответственно, катализатора в) обеспечение наиболее приемлемого размера и формы гранул. [c.100]

    Из приведенных данных видно, что наибольшая активность для катализаторов гидрообессеривания, синтезированных на основе широкопористого носителя, достигается только при совместном присутствии кобальта и молибдена. Оптимальными по активности являются катализаторы с атомным соотношением кобальт молибден в интервале 0,7-1,6. [c.101]

    Д - КГ-4 - АКМ-катализатор гидрообессеривания средних фракций. [c.107]

    Ведутся разработки по применению отработанного катализатора гидрообессеривания для гидрокрекинга тяжелого сырья. Отработанный катализатор, содержащий 12,9% углерода, 9,6% ванадия и 2,1% никеля измельчается и смешивается с сырьем (3,4% на сырье) [117]. Считается, что при соответствующем оформлении процесса использование отработанного катализатора будет экономически оправдано. Этот прием может рассматриваться лишь как средство повышения эффективности исполь- [c.148]

    Никельмолибденовые катализаторы гидрообессеривания. Переработка нефти и нефтехимия. М., ЦНИИТЭнефтехим, [c.122]

    Обычно наблюдаемая степень удаления арота не превышает 30%, даже при высоких показателях по удалению серы. Прямая деструкция азотсодержащих соединений невозможна из-за высокой термической стабильности. Энергия разрыва связи С-КНг составляет 335,2 Дж/моль, т. е. практически равна энергии разрьта связи С-С. Удаление азота обязательно должно включать стадию насыщения кольца [36,40]. В результате расход водорода высок — 6-7 моль водорода на моль аммиака [37]. Для ускорения реакции деазотирования в катализаторе необходимы обе функции - гидрирования и гидрообессеривания [47], но они сильно зависят от типа соединений. Азотсодержащие соединения оказывают ингибирующее влияние на активные центры катализаторов гидрообессеривания, природа которых пока полностью не выяснена. В целом гидродеазотирование гетероциклических соединений азота изучено хуже, чем гидрообессеривание. Ясно, однако, что тип связи азота, так же как и связи серы, играет большую роль и определяет скорость деструктивного гидрирования азотсодержащих соединений. Например, алифатические амины значительно более реакционноспособны, чем ароматические. [c.56]


    Предварительное сульфидирование катализаторов гидроочистки является важным средством повышения активности катализаторов гидрообессеривания и гидродеазотирования [78,79,134-137]. Существуют различные способы сульфидирования. В частности, рекомендуется проводить сульфидирование катализаторов гидрогенизационных процессов сероводородом. При этом достигается наиболее высокая степень сульфидирования [142], но применение этого способа затруднено из-за высокой токсичности и коррозионной активности сероводорода и сложности его дозирования. Наиболее широко в промышленных условиях применяется сульфидирование катализатора серусодержащей нефтяной фракцией или индивидуальными сераорганическими соединениями [38,79]. Например, дистиллятная нефтяная фракция с высоким содержанием серы пропускается через катализатор в течение 1-2 суток в режиме гидроочистки (давление 3-15 МПа, температура 300-450 С). Однако при этом полного сульфидирования катализатора не достигается вследствие экранирования части активных центров отложениями кокса. Наиболее эффективным является метод сульфидирования специальными серусодержащими веществами [78], такими могут служить сероуглерод, диметилсульфид, н-бутил меркаптан, диметилдисульфид, ди-третнонилполисульфид. Однако применение сероуглерода и меркаптанов сдерживается нормами по охране окружающей среды. Поэтому наиболее успешно применяются диметилдисульфид и диметилсульфид, обладающие низкими температурами разложения (250 С) и дисульфидное масло, получаемое на установке демеркаптанизации ДМД-2. [c.15]

    Известны многочисленные примеры применения катализатора гидрообессеривания без носителей, но многие катализаторы, включая и применяемый на промышленных установках кобальтмолибденовый, обычно выпускают на носителях. Применение катализаторов на носителях более целесообразно вследствие таких преимуществ, как большая механическая прочность, особенно в условиях регенерации, и возможность более рационального использования дорогих и активных в реакциях обессеривания компонентов [130-132]. [c.16]

    НОВЫЕ КАТАЛИЗАТОРЫ ГИДРООБЕССЕРИВАНИЯ [c.43]

    Основные формы промышленных гидрогенизационных процессов характеризуются последовательным использованием катализаторов гидрообессеривания (А1-Со-Мо или А1-№-Мо) и катализаторов расщепления (Р1 и Р<1 на носителе). Температуры лежат в пределах 350-500 С давление в зависимости от глубины процесса меняется от 3 МПа (гидроочистка) до 15-20 МПа (гидрокрекинг). [c.38]

    Регенерация катализатора. В процессе эксплуатации катализатор постепенно теряет свою активность в результате закоксовывания и отложения на его поверхности металлов сырья. Для восстановления первоначальной активности катализатор подвергают регенерации окислительным выжигом кокса. В зависимости от состава катализатора применяют газовоздушный или паровоздушный способ регенерации. Цеолитсодержащие катализаторы гидрообессеривания и гидрокрекинга нельзя подвергать паровоздушной регенерации. [c.573]

    Результаты анализа образцов катализатора гидрообессеривания деасфальтизатов, отработанных в длительном опыте при постоянной теипературе процесса [c.87]

    Таким образом, анализ имеющейся литературной и патентной информации показывает, что разработки в области катализаторов для гидрообессеривания остаточных видов нефтяного сырья направлены на увеличение стабильности их работы и селективности, создание более стойких в дезактивации отложениями кокса и металлов модификаций. Важнейшими факторами повышения стойкости катализаторов гидрообессеривания остатков к закоксовыванию являются высокая гидрирующая активность, а также подбор оптимальной пористой структуры, наиболее соответствующей характеру перерабатываемого сырья. [c.101]

    Катализаторы гидрообессеривания КГ синтезировались на основе 4 образцов активной окиси алюминия. [c.104]

    АКМ катализатор гидрообессеривания средних [c.110]

    Полученные данные достаточно однозначно подтверждают выводы о быстрой дезактивации гидрокрекирующих функций катализаторов гидрообессеривания остатков. Также можно сделать вывод о том, что глубина термодеструкции в [c.58]

    Однако из всего многообразия изучешхых систем в конечном итоге отдается предпочтение в настоящее время значительно меньшему числу элементов и их сочетанию - это кобальт, никель, молибден, реже вольфрам, платина, ванадий, железо. Выбор подобных элементов определяется многими факторами, положительно характеризующими их мак с позиций их электронной структуры, так и свойств их солей и соединений, определяющих и технологичность операций создания катализатора, и применимость в практике созданной каталитической системы. Итак, круг элементов, используемых в синтезе катализатора гидрообессеривания нефтяных остатков, значительно сузился. [c.94]

    Применительно к катализаторам гидрообессеривания следует рас-смагривать равновесие между сульфидами металлов, сероводородом и водородом, поскольку соответствующие сульфиды представляют собой конечный продукт как равновесное состояние катализатора. В соответствии с этим [67], на основе литературных данных, рассчитаны равновесные реакции восстановления некоторых сульфидов водородом (рис. 3.1). Из номограмм следует, что в области температур гидрообессеривания 350-420 °С, что соответствует значению Т ЛО по шкале абсцисс 16—14,4, достаточно в водороде незначительного содержания сероводорода для превращения металлов в сульфиды низшей валентности. С повышением содержания сероводорода в водороде увеличивается вероятность образования сульфидов высшей формы. На практике картина усложняется ввиду существования взаимодействия активных [c.95]


    Большое внимание в разработке катализаторов уделяется созданию поровой структуры, соответствующёй характеру перерабатываемого сырья. Мнения о наиболее предпочтительной структуре катализаторов гидрообессеривания остаточного нефтяного сырья в начальный период [c.105]

    С повышением цен на металды и появлением большого количества отработанных катализаторов ситуация изменилась. Фирма Ег1са1[118] с 1979 г. организовала во Франции сбор и переработку отработанных катализаторов гидрообессеривания с целью утилизации ценных металлов. Только в Западной Европе в виде катализаторов расходуется 400— 450 т молибдена и 100-150 т кобальта. В течение 1976-1979 гг. цены на кобальт увеличились в пять раз, на молибден в три раза. Извлечение этих металлов стало рентабельным. [c.149]

    Известно, что кобальт- и никельмолибденовые катализаторы гидрообессеривания характеризуются различным поведением в основных реакциях гидроочистки гидрообессеривания, гидродеазотирования и гидрирования ароматических соединений. Никелевый катализатор в 2 раза активнее кобальтового в реакции гидрирования, что обуславливает более высокий расход водорода, чем при использовании кобальтовых катализаторов в тех же условиях. Средняя температура в реакторе гидрообессеривания с никелевым катализатором на 5-10°С выше, чем при использовании кобальтового при одной и той же степени превращения сырья. Никелевые катализаторы имеют преимущество в реакции гидродеазотирования, однако, при достаточно высоком давлении водорода кобальтовые катализаторы также дают хорошие результаты. [c.96]

    Очевидно, что при использовании катализаторов деароматизации с умеренной гидрообессеривающей активностью получить экологически чистое дизельное топливо в одну стадию нельзя. Поэтому была использована комбинация из двух катализаторов. Следует отметить возможность применения на первой стадии катализаторов гидрообессеривания, хорошо зарекомендовавших себя в промышленных условиях. Принятая пос./1едовательность операций в предлагаемом двухстадийном процессе позволяет поддерживать оптимальные условия как на стадии гидрообессеривания, так и на стадии деароматизации. [c.46]

    Очистка бензольных- углеводородов в присутствии водорода осуществляется в газовой фазе над катализатором. Целевыми реакциями очистки являются гидрообессеривание и гидрирование ненасыщенных углеводородов. При получении бензола высокой степени чистоты определяющими являются реакции гидрообессе-ривання, особенно гидрогенолиз наиболее термически стабильного соединения — тиофена. Катализаторами гидрообессеривания могут быть сульфиды или оксиды молибдена, кобальта, вольфрама, никеля, ванадия. В промышленности широко распространен алюмокобальтмолибденовый катализатор. [c.224]

    В этом случае увеличивается объемная производительность и срок службы катализаторов гидрообессеривания и становится возможным проводить гидрообессеривание широких фракций или низкокачественных нефтяных остатков. Однако термокаталитическую деасфальтизацию удобно осуществлять как предварительную ступень, предшествующую дру-гид у процессам нефтепереработки, при которых удяление или снижение содержания асфальтенов и связанных с ними минеральных компонентов или даже простое превращение их из коллоидной дисперсии в коагулированное состояние могут давать существенные преимущества в отношении стоимости, выходов или качества получаемых продуктов  [c.45]

    Известны и широко применяются различные способы предварительного осернения катализаторов гидрообессеривания топлив. Способы заключаются в переводе активных металлов, содержащихся на катализаторе, из окисной формы в сульфидную. Целью данных исследований являлась разработка метода предварительной пассивации катализаторов процесса каталитической депарафинизации. В процессе пассивации необходимо было решить две задачи первая - провести сульфидирование металлов, вторая - нейтрализовать гиперактивные кислотные центры на поверхности катализатора, вызывающие неуправляемые реакции крекинга, приводящие к быстрой потере активности катализатора. В качестве пассивирующих агентов были использованы дисульфиды и анилин. [c.13]

    Подбором оптимального соотношения различных катализаторов гидрообессеривания достигается максимальный эффект. При анализе поведения катализаторов гидробессеривания и гидродеметаллизации становится очевидным, что сочетание катализаторов или ступенчатых катализаторных систем будут более эффективны при переработке сырья с высоким содержанием металлов по сравнению с единичным катализатором. При этом необходимо обеспечивать сочетание высокой стойкости катализатора к металлам с хорошей конверсионной активностью, так как диапазон примесей, содержащихся в перерабатываемых остатках, очень широк содержание серы может изменяться от 0,2 до 6%, металлов — от 20 до 1000 мг/кг. [c.432]

    Носители, обладающие кислотными свойствами, как, например, синтетические аморфные и кристаллические алюмосиликаты и цеолиты, магний- и цирконийсиликаты, фосфаты, придают катализаторам дополнительно изомеризующие и расщепляющие (крекирующие) свойства. Отсюда понятно, почему катализаторы гидрообессеривания высококипящих и остаточных нефтяных фракций, особенно гидрокрекинга, изготавливаются с использованием кислотно-активных носителей. Катализаторы на таковых носителях, содержащие металлы VI и VIII групп, являются по существу полифункцио-нальными. [c.566]

    Анализ патентной информации показывает, что модифицирование катализаторов для гидрообеосвривания остаточных видов нефтяного сырья проводится путем подбора активных металлов, вЕвдением промоторов, изменением химического состава носителей. Большов внимание в разработке специальных катализаторов уделяется созданию пористой структуры, наиболее соответствующей характеру перерабатываемого сырья. Сведения по пористой структуре катализаторов гидрообессеривания остаточного нефтяного сырья s ряде случаев довольно противоречивы. [c.98]


Смотреть страницы где упоминается термин Катализаторы гидрообессеривания: [c.101]    [c.106]    [c.107]    [c.117]    [c.147]    [c.175]    [c.129]    [c.27]    [c.39]    [c.127]    [c.30]    [c.15]    [c.342]    [c.342]    [c.101]    [c.101]    [c.433]    [c.566]    [c.67]    [c.112]   
Смотреть главы в:

Промышленные катализаторы гидрогенизационных процессов нефтепереработки -> Катализаторы гидрообессеривания

Гидропереработка остаточных видов сырья -> Катализаторы гидрообессеривания




ПОИСК





Смотрите так же термины и статьи:

Влияние физических характеристик катализаторов j гидрообессеривания на их активность

Гидрообессеривание нефтяных остатков катализаторы

Дезактивация катализаторов гидрообессеривания

Регенерация катализаторов гидроочистки и гидрообессеривании

Хабибуллин, Г.А.Берг, А.С.Шмелев, А.В.Балаев, Исследование закономерностей дезактивации катализатора в процессе гидрообессеривании даасфальтированных вакуумных остатков



© 2025 chem21.info Реклама на сайте