Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь электронных спинов

    Элементарные процессы, сопровождающиеся электронными переходами, являются неадиабатными. Электронный переход соответствует переходу системы, при достижении вершины барьера, с одной потенциальной поверхности на другую. При неадиабатных процессах достижение вершины потенциального барьера еще не говорит о безусловном переходе к конечным продуктам, и существует конечная вероятность перехода системы с нижней потенциальной поверхности на верхнюю. Таким образом, для неадиабатных процессов трансмиссионный коэффициент X заведомо меньше единицы. Как правило, процесс протекает неадиабатно, если реакция связана с изменением суммарного электронного спина или соответствует какому-ни будь другому запрещенному переходу. Трансмиссионный коэффициент для неадиабатных процессов чаще всего оказывается порядка 10 . Приближенные расчеты показывают, что неа диа батные реакции встречаются довольно редко. [c.146]


    Кроме указанных факторов некоторое влияние на прочность связи электронов в атоме имеет взаимное отталкивание электронов, принадлежащих к одному и тому д<е слою. Этот эффект также иногда называют экранированием. Такое отталкивание особенно сильно, когда два электрона с противоположными спинами находятся на одной орбитали. [c.42]

    Как и в методе ВС здесь учитывается значение параллельности или антипараллельности спинов электронов данной пары. Энергия молекулярной орбиты, образованной электронами с антипараллельными спинами меньше, чем энергия соответствующих орбит в атомах. Образование ее из соответствующих атомных орбит сопровождается выделением энергии. Такую орбиту называют Связывающей. Энергия связи электрона такой орбиты в молекуле выше, чем энергия связи его в атоме. Так, потенциал ионизации атома водорода равен 13,5 в, а молекулы На 15 0. [c.68]

    ЭПР свободных электронов связан с парамагнетизмом их спинов. По этой причине его также называют электронным спиновым резонансом (ЭСР). Электроны на полностью заполненных молекулярных орбиталях вообще ие вносят вклад в магнитный момент, поскольку, согласно принципу Паули, спаренные спины компенсируют друг друга. Если, однако, связь разорвана вследствие гомолитического разрыва, то образуются свободные радикалы с неспаренными электронными спинами, которые и детектируются. Свободный электрон обладает магнитным моментом ц, равным [c.157]

    Таким образом, проведенное исследование позволило сделать вывод, что химическая связь в молекуле водорода осуществляется путем образования пары электронов с противоположно направленными спинами, принадлежащей обоим атомам. Разработанная на этой основе теория химической связи и для более сложных молекул получила название метода валентных связей. Важным положением является то, что всякий раз, когда химическая связь образуется, спины пары электронов должны быть антипараллельными. Это находится в соответствии с принципом Паули и подчеркивает, что при образовании химической связи электроны переходят в новое квантовое состояние. [c.103]

    Молекула НгО образуется из атома кислорода и двух атомов водорода. Атом кислорода имеет два неспаренных р-электрона (см. стр. 159), которые занимают две орбитали, расположенные под углом 90° друг к другу. Атомы водорода имеют ls-электроны. На рис. 70 показаны волновые функции неспаренных электронов в атомах кислорода и водорода (плюс и минус — знаки волновых функций). При сближении атома водорода с электроном, спин которого направлен противоположно спину одного из неспаренных р-электронов атома кислорода, эти электроны образуют общее электронное облако, связывающее атомы кислорода и водорода. При этом угол между связями должен быть близок к углу между облаками р-электронов, т.е. к 90°. Однако угол между связями в молекуле НгО равен 104,5°, т.е. отличается от величины [c.161]


    Косвенное спин-спиновое взаимодействие не усредняется до нуля за счет теплового движения потому, что передается не по линии, соединяющей ядра в пространстве, а через связующие электроны. Такие электроны должны иметь характер [c.79]

    Каков же механизм спин-спинового взаимодействия через электроны химической связи Упрощенно его можно представить так. Электроны атомов водорода и дейтерия в молекуле стремятся сориентироваться таким образом, чтобы система спинов имела возможно меньшую энергию. Это будет в том случае, если векторы магнитных моментов электронов будут антипараллельны векторам магнитных моментов ближайших к ним ядер. Кроме того, оба электрона, образующие ковалентную связь, стремятся сориентировать свои спины, а следовательно, и векторы магнитных моментов, также антипараллельно. В результате этого два вектора магнитных моментов ядер в молекуле Н—О стремятся расположиться антипараллельно. Образно говоря, вследствие непрямого спин-спинового взаимодействия каждое из ядер знает , в каком спиновом состоянии находится другое магнитное ядро, причем передатчиком информации служат связующие электроны. Именно поэтому спиновая плотность электрона, обеспечивающего такую связь ядер, должна отличаться от нуля, что возможно только в случае электронов, имеющих -характер. [c.79]

    Таким образом, сущность спин-спинового взаимодействия сводится к тому, что данное ядро или группа эквивалентных ядер через связующие электроны получает информацию о возможных спиновых состояниях соседней группы эквивалентных ядер в виде небольших составляющих магнитного поля, которые налагаются на внешнее магнитное поле Яц. В результате этого сигналы ЯМР высокого разрешения приобретают сверхтонкую структуру. Вид этой структуры зависит от числа и электронного окружения магнитных ядер, связанных с данным ядром. [c.86]

    В настоящее время известно много различных видов химической связи. Теория спин-валентности полностью их не охватывает. Однако она дает достаточно широкую основу для понимания большинства случаев химической связи, главную роль в которых играет спаривание (обобществление) электронов соединяющихся атомов. Можно сказать, что образование обобществленных электронных дублетов, как правило, и является основой химической связи между атомами в молекулах простых и сложных веществ. [c.69]

    В заключение заметим, что если бы мы удаляли из какой-либо энергетической зоны кристалла несколько электронов, то удаление первого, второго, третьего и т. д. электрона сопровождалось бы неодинаковым изменением полной потенциальной энергин системы. В связи с этим валентная зона и зона проводимости изображаются иногда в виде целой системы энергетических уровней (рис. 17). При таком способе изображения зоны на каждом энергетическом уровне не может находиться больше двух электронов, которые должны обладать противоположной ориентацией спинов. Последнее соответствует тому, что на один участвующий в образовании химической связи электрон не может приходиться меньше двух элементарных объемов. Неполное заполнение энергетических уровней валентной зоны указывает на присутствие в ней дырок, т. е. ненасыщенных химических связей. Разобранная выше диаграмма бывает удобна при рассмотрении движения электронов по валентной зоне кристалла. Следует, однако, отметить, что она не дает никакой дополнительной информации и поэтому в дальнейшем не используется. [c.82]

    Ковалентная связь и спин электронов. Теория Льюиса, развитая подробнее Лэнгмюром и затем Сиджвиком, не разбирает вопроса, почему электронный дублет обладает связывающими свойствами. Гейтлер и Лондон доказали, что если спины электронов двух атомов водорода параллельны, то атомы водорода отталкиваются если они антипараллельны, то связываются, т. е. связывающими свойствами обладает дублет из электронов с антипараллельными спинами. Как пример рассмотрим образование молекул р2 и 5,. У фтора в наружном квантовом слое 7 электронов он имеет [c.109]

    На основе принципа несовместимости и представления об определяющей роли электронных спинов при взаимодействии атомов (П1 5 доп. 2) была построена спиновая теория валентности. Согласно этой теории (Лондон, 1928 г.), образование валентной связи между двумя атомами обусловлено взаимной компенсацией спинов их валентных электронов, причем получающаяся электронная пара входит во внешние электронные слои обоих атомов. [c.228]

    Как видим, и обменное и кулоновское притяжение электронов к ядрам приводят к уменьшению системы и образованию химической связи. Обменное взаимодействие атомов связано с ориентацией электронных спинов. При этом антипараллельность спинов следует рассматривать лишь как условие образования связи. Основную же роль здесь играет электрическое притяжение электронов и ядер. [c.125]


    По представлениям, развиваемым П. П. Кузьменко, металлическая связь является разновидностью делокализованной валентной связи. Она образуется в результате перекрывания облаков не спаренных в атомах внешних электронов. При этом спины электронов соседних атомов спарены. Электронная проводимость металлов не связана с отрывом электронов от атома. Металл состоит из нейтральных атомов. Связующие электроны свободно перемещаются в его кристаллической решетке. [c.167]

    Для антисимметричной волновой функции, характеризующейся параллельностью электронных спинов, наблюдается уменьшение плотности электронного облака между атомами [см. (IV.16)] и, следовательно, химическая связь не возникает, т. е. соединение не образуется . При этом электронная плотность между ядрами падает до нуля и в результате электроны выталкиваются из этого-пространства. Наоборот, при возникновении химической связи и образовании соединения электронные облака стремятся вытянуться навстречу друг к другу. [c.92]

    Однако из-за того, что энергия связывающих МО частично компенсирована энергией разрыхляющих МО, в химической связи фактически участвуют не все электроны. Так, на каждой а-орбитали может находиться до двух связывающих электронов с антипараллельными спинами, на л орбиталях—до четырех электронов и т. д. При этом следует также считаться с различным участием в химической связи электронов, принадлежащих в атомах разным слоям (уровням). Очевидно, что наибольшее участие в образовании связи должны принимать электроны внешнего валентного слоя. Участие же электронов более глубоких слоев должно быть малым, и в первом приближении им можно пренебречь. Поэтому при записи МО учитывают только внешние орбитали атомов, считая более глубинные неизменным атомным остовом. [c.292]

    На рис. 30 показана зависимость энергии молекулы водорода от межъядерного расстояния, образование молекулы водорода представлено сплошной кривой. Она состоит ИЗ двух ветвей притяжения аЬ и отталкивания Ьс атомов. В точке минимума силы притяжения уравновешиваются силами отталкивания. Равновесное расстояние го, т.е. расстояние от минимальной точки Ь до оси ординат, представляет собой длину химической связи, а отрезок от минимума кривой до оси абсцисс характеризует энергию связи или энергию диссоциации Ец молекулы водорода на атомы. При образовании молекулы водорода (рис. 30, сплошная кривая) спины электронов антипараллельны, а отсутствие химического взаимодействия (пунктирная кривая) характеризуется параллельностью электронных спинов. Это вытекает из анализа уравнения (IV.9) при перемене координат электронов с соблюдением принципа Паули. Уравнение (IV.9) можно записать в виде двух самостоятельных выражений  [c.69]

    Было высказано предположение- [44, 45], что реакции цис-транс изомеризации могут протекать по двум различным путям. Первый из них должен включать крутильное колебание около двойной связи. Этот путь требует больших энергий активации, но должен иметь нормальный частотный фактор. Второй путь должен включать возбуждение двойной связи, соответствующее образованию бирадикала с двумя неспареиными электронами, благодаря чему возникает возможность свободного вращения вокруг результирующей одинарной связи. Если этиленовая молекула может почему-либо совершить переход из своего нормального (синглетного) состояния в бирадикальное (триплетное) состояние, то энергия активации может быть много меньшей. Было рассчитано, что в некоторых случаях она равна лишь 25 ккал моль [46]. Однако такие переходы являются запрещенными в квантовой механике, поскольку они включают изменение мультиплетности полного электронного спина молекулы. [c.229]

    В 1926 г. Гейзенберг и Шредингер создали механику атомных и молекулярных систем, которая получила широкое применение в атомной и молекулярной физике. Необходимое дополнение в квантовую механику внес Паули, разработавший теорию электронных спинов. Это явилось фундаментом, на котором с учетом известного правила несовместимости (запрет Паули в атоме не может быть двух электронов, обладающих 4 одинаковыми квантовыми числами) было построено учение о химических силах, в принципе позволяющее понять и описать образование химических соединений. Сначала удалось интерп )етировать устойчивость электронных оболочек атомов инертных газов, благодаря чему нашло исчерпывающее объяснение понятие электровалентной связи, лежащее в основе теории Косселя. Затем получила квантово-механическое истолкование и ковалентная связь. Гейтлером и Лондоном было показано, что связь двух атомов в молекуле водорода может быть объяснена чисто электростатическими силами, если для этого использовать квантовую механику. Силы, связывающие два атома и два электрона, возникают благодаря тому, что оба электрона имеют антипараллельные спины и с большой степенью вероятности находятся между двумя атомными ядрами насыщаемость химических связей объясняется принципом Паули. Таким образом, представления Льюиса получили исчерпывающее физическое обоснование. [c.24]

    Так, обработка сажи П805Э в вибрационной мельнице, по данным [В-5], разрушает первичные сажевые агрегаты и способствует возникновению кислородсодержащих, главным образом, основных функциональных групп на поверхности. Обраьзование активных центров не обязательно связано с полной декомп( Нса-цией электронных спинов. Возможна деформация связей, в результате которой их энергия приближается к энергии диссоциации химических связей. [c.211]

    Указанием на наличие связей М—М могут служить относительно более короткие расстояния между атомами металла. Возможность образования связей М—М в основном определяется такими факторами, как степень окисления металла, вид лигандов и др. Магнитные свойства многих этих соединений также не могут непосредственно свидетельствовать о простом спаривании электронных спинов атомов металла и образования связи М—М. На магнитных свойствах могут сказываться не только М—М-взаимодействия, но и сильное перекрывание орбиталей атомов металла и лигандов. Например, в КиОг молекулярные орбитали имеют значительную протяженность. Это соответствует образованию энергетических зон, что сильно влияет на магнитные свойства соединения. [c.616]

    Наличие электронного спина и связанного с ним магнитного момента lie обусловливает возможность снятия вырождения спиновых состояний внешним магнитным полем и индуцирования переходов между ними. Эти переходы происходят с поглощением энергии электромагнитного излучения в микроволновой (30...2 мм) области (СВЧ диапазон 9...35 ГГц интервал значений индукции постоянного магнитного поля 0,34—1,25 Т), что и называют электронным парамагнитным резонансом. В зарубежной литературе используется термин электронный спиновый резонанс (ESR), однако в рассматриваемом методе радиоспектроскопии состояния из-за спинорбитальной связи не являются чисто спиновыми, поэтому более адекватно название ЭПР или даже парамагнитный резонанс. [c.54]

    Механизм образования химической связи удобнее всего рассмотреть на примере образования молекулы водорода из атомов. Формула электронной конфигурации ато1 водорода — 15, т. е. у него имеется только один неспарен ный электрон. В соответствии с законами квантовой механики атом водорода, содержащий неспаренный электрон, находится в неустойчивом состоянии, поскольку обладает избытком потенциальной энергии. Такой атом будет притягивать к себе другой атом водорода при условии, если спин его электрона имеет противоположное направление. Взаимное притяжение атомов приводит к тому, что их атомные орбитали перекроются, при этом оба электрона станут в равной мере принадлежать обоим атомам, т. е. образуется пара электронов с противоположно направленными спинами, которая осуществляет химическую связь. Электронное облако, образуемое этой парой электронов, охватывает, связывает воедино ядра обоих взаимодействующих атомов. Такая связывающая два одинаковых атома двухэлектронная связь называется ковалентной. [c.69]

    Принцип запрета, или принцип Паули. В 1925 г. швейцарский физик Вернер Паули сформулировал основополагающий принцип, описывающий поведение электронов, который не может бьуь выведен из более общих законов природы. Этот принцип целиком связал со спином электрона. Для учета спина полная волновая функция представляется в виде произведения пространственной и спиновой волновых функций. Таким образом, величина I г ) Р есть вероятность нахождения электрона с данным спином в данной точке пространства. Принцип Паули первоначально сформулирован так не может быть двух электронов с одинаковой пространственной частью волновой функции (т. е. занимающих одну орбиталь) и одинаковым спином. Этот принцип ограничивает предельное число электронов на одной орбитали. Действительно, если каждая атомная орбиталь характеризуется тремя числами п, I а т, а спиновое число принимает только два разных значения, то на орбитали не может быть более двух электронов. Спины этих электронов должны быть противоположны по направлению, или спарены. [c.170]

    Теперь становится понятным, почему атомы таких элементов, как бериллий, цинк, кадмий и ртуть, которые могут принимать конфигурацию п8 пр с параллельными электронными спинами, образуют двухковалентные соединения со связями, направленными под углом 180 . Аналогично, атом бора в конфигурации 15 2з 2р р1 с тремя электронами, имеющими параллельные спины, должен с наибольшей вероятностью образовывать лежащие в плсскссти связи, направленные под углом 120° друг относительно друга (ср. с гибридными хр -орбиталями). Циммерман и ван Рис-сельберг показали, что для атома углерода в конфигурации 1з 25 2р1р ,р2 четыре неспаренных электрона с параллельными спинами, согласно принципу Паули, наиболее вероятно распределе ны по направлению к вершинам правильного тетраэдра (ср. с ибридными 5р -орбиталями). [c.204]

    На примере молекулы Н—D мы рассмотрели спин-спиновое взаимодействие двух различных магнитных ядер через связующие электроны (гетероядернов спин-спиновое взаимодействие). Аналогичное взаимодействие может происходить и между ядрами одного и того же изотопа (например, между протонами, если они находятся в различном химическом окружении), т. е. взаимодействие между группами неэквивалентных протонов (гомоядерное спин-спиновое взаимодействие). [c.80]

    По непрямому электронному спин-спиновому взаимодействию можно сделать ряд общих выводов, которые следует учитывать при интерпретации спектров. В отличие от расщепления, вызванного химическим сдвигом, расщепление за счет взаимодействия спинов ядер не зависит от величины внешнего поля Н . Влияние непрямого спин-спинового взаимодействия может сказаться на нескольких связях. Однако с увеличением числа связей между взаимодействующими ядрами оно быстро уменьшается. Если взаимодействующие ядра связаны более чем тремя о-связями, то расщепления чаще всего не наблюдается. Напротив, до девяти связей дальнего порядка можно обнаружить в том случае, если их взаимодействие происходит по п-связям. При взаимодействии ядер, характеризующихся равными химическими сдви гами, расщепления в спектре не наблюдается (например, при взаимодействии протонов СНа-группы). Вне пределов этого условия величины констант взаимодействия зависят от порядка связей и их геометрии в молекуле. Отметим, что они занисят и от длины связей, величины валентного угла, типа гибридизации в атоме, осуществляющем связь, и от электроотрицательности имеющихся заместителей. [c.259]

    Токи, связанные с орбитальным движением электрона и с его спином, взаимодействуют друг с другом. Каждый из этих токов создает магнитное поле, которое воздействует на другой ток. Взаимодействие магнитных полей, создаваемых токами, обусловливает зависимость орбитального и спинового моментов количества движения совокупности электронов, его называют спин-орбитальным взаимодействием или спин-орвитальнай связью. Энергия спин-ор-битального взаимодействия много меньше разности энергетических уровней электронов, но, несмотря на это, она оказывает существенное влияние на стационарные состояния атома. Это влияние приводит к снятию вырождения состояний с одним и тем же квантовым числом орбитального движения. Подобное снятие вырождения служит основьюй причиной появления тонкой структуры атомных спектров (см. разд. 3.9) в отсутствие внешних полей. Строгое рассмотрение спин-орбитального взаимодействия возможно при решении релятивистского уравнения Дирака. Однако полуклассический подход позволяет выявить наиболее важные детали этого эффекта. [c.77]

    Образуется внутриорбитальный комплекс низкоспиновый, немагг нитный, так как содержит только спаренные электронные спины. Метод валентных связей (МВС) является наглядным методом, однако он не может дать качественной характеристики оптических свойств и прочности комплексов. Наиболее эффективными в этом отношении являются ТКП и ММО. [c.380]

    Полинг предполагает, что образование связей в переходных металлах обусловлено электронами в с1-, з- и ]0-состояниях, а не только электронами в -состоянии. Одни лишь -орбитали недостаточны для образования связи, и только гибридизация между й-, 5- и р-ор-биталями может привести к очень стабильным гибридным орбиталям. С этой точки зрения в IV периоде для образования связи пригодны одна 45-, три 4р- и пять 3 /-орбиталей и при полном их использовании связь может осуществляться девятью орбиталями. Если бы для связи использовались все девять возможных орбита-лей, то при переходе от К к Си следовало бы ожидать непрерывного увеличения прочности связи. Однако максимум прочности решетки достигается у хрома, а далее прочность уменьшается по направлению к никелю. Это привело Полинга к предположению, что только некоторые -орбитали пригодны для образования металлической связи, С учеюм магнитных свойств принимается, что для образования металлической связи из пяти -орбиталей пригодны только 2,56. Остальные 2,44 -орбитали являются атомными орбиталями. Электроны на атомных -орбиталях связаны с ядром атома и не участвуют в образовании металлической связи. Электроны связывающих -орбиталей полностью отделены от атома и коллективизированы в системе электронов кристалла. В свою очередь, атомные -орбитали, содержащие электроны с неспаренными спинами, обусловливают магнитные свойства металлов. Таким образом, Полинг различает связывающие -электроны, которые участвуют в ковалентных связях между соседними атомами кристалла и обеспечивают силы сцепления в металле и атомные -электроны, ответственные за парамагнетизм. Связывающие электроны описываются гибридными 5р-функциями, атомные же — просто -функциями. [c.148]

    При электронном возбуждении частицы один (или несколько) из электронов ггереходит на молекулярную орбиталь с более высокой энергией. Многие наиболее существенные для понимания механизма фотохимических превращений моменты могут быть рассмотрены на примере частицы, у которой возбуждаемый электрон в основном состоянии находится на двухцентровой молекулярной орбитали. В этом случае потенциальная энергия химической связи и может быть с достаточной степенью точности представлена как функция расстояния между ядрами К, т. е. изображена в виде кривой потенциальной энергии. Для дальнейшего изложения следует рассмотреть три возможных типа возбужденных состояний частицы. Кривые потенциальной энергии этих состояний вместе с кривой для основного состояния представлены на рис. 47. При этом здесь и ниже речь будет идти главным образом о частицах, у которых в основном состоянии суммарный электронный спин равен нулю. Такие состояния называются синглетными. Основное синглетное состояние будет далее обозначаться как 5о- [c.154]


Смотреть страницы где упоминается термин Связь электронных спинов: [c.125]    [c.147]    [c.259]    [c.166]    [c.177]    [c.80]    [c.146]    [c.128]    [c.146]    [c.44]    [c.91]    [c.70]    [c.81]    [c.95]   
Метод молекулярных орбиталей (1980) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Спин электрона

Спин-эхо

Спины

Спины электронные

Электрон связи



© 2025 chem21.info Реклама на сайте