Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронно-ядерные (сверхтонкие) взаимодействия

    Каковы правила отбора для переходов между зеемановскими уровнями по электронному и ядерному спиновым квантовым числам в системах с электрон-ядерным сверхтонким взаимодействием  [c.86]

    Электронно-ядерные (сверхтонкие) взаимодействия [c.288]

    Электрон-ядерное взаимодействие и сверхтонкая структура спектра ЭПР [c.59]

    Магнитный изотопный эффект (МИЭ) в радикальных реакциях возникает из-за влияния магнитного момента ядер на динамику синглет-триплетных переходов в радикальных парах. В предыдущих лекциях уже не раз говорилось, что в РП одним из механизмов S-T переходов является сверхтонкое взаимодействие неспаренных электронов радикалов с магнитными ядрами. И если СТВ вносит заметный вклад в спиновую динамику РП, то изотопным замещением можно на нее влиять, так как разные изотопы характеризуются разным СТВ. Например, при замещении водорода дейтерием масштаб сверхтонкого взаимодействия уменьшается примерно в четыре раза. Изотоп углерода С не имеет ядерного магнитного момента, так что СТВ с этим ядром отсутствует. А вот изотоп С имеет ядерный магнитный момент. Поэтому при изотопном замещении -С — С в радикале появляется сверхтонкое взаимодействие неспаренного электрона с ядром углерода. [c.47]


    Оказалось, что времена ядерной магнитной релаксации 71 и Гг растворителя (изотопы Н и Ю) резко укорачиваются под влиянием парамагнитных катионов за счет прямого диполь-ди-польного и контактного сверхтонкого взаимодействия между электронным и ядерным магнитными моментами. Ввиду большого значения магнитных моментов неспаренных электронов этот механизм эффективен уже при малых концентрациях парамагнитных катионов 10 —10 моль/л [833]. Парамагнитные примеси, создавая сильные магнитные поля на ядрах молекул растворителя, координированных парамагнитным катионом, ускоряют отвод энергии от системы резонирующих ядерных спинов к ее окружению (решетке). Благодаря быстрому обмену молекул воды в координационной сфере аква-комплекса влияние парамагнетика распространяется на весь объем растворителя, и за время релаксации все ядра растворителя успевают побывать в непосредственной близости от катиона. При прочих равных условиях скорость релаксации 01=(1/Г1) или 02=(1/Гг) линейно зависит от концентрации катиона Таким образом, ядерная магнитная релаксация оказывается чувствительным инструментом обнаружения и количественной оценки содержания парамагнитных ионов в растворе. [c.436]

    Именно орбитальный вклад в магнитный момент частицы меняет условия резонанса, что проявляется в значении -фактора (Ланде), и это первая характеристика спектра ЭПР. Второй важнейшей чертой, содержащей большую информацию, является сверхтонкая структура спектра, обусловленная электрон-ядерным спин-спиновым взаимодействием. В спектрах ЭПР анизотропных образцов, содержащих парамагнитные центры с 5 1, может наблюдаться также тонкая структура, связанная с расщеплением спиновых уровней энергии в нулевом поле, т. е. без наложения внешнего магнитного поля. Определенную информацию несет ширина сигналов ЭПР. Сам факт наблюдения спектра говорит прежде всего о том, что хотя бы какая-то часть образца содержит парамагнитные частицы или центры, т. е. имеет неспаренные электроны. [c.55]

    Первый член описывает расщепление в нулевом поле, следующие два члена—влияние магнитного поля на спиновую мультиплетность, остающуюся после расщепления в нулевом поле члены с Ац и являются мерой сверхтонкого расщепления параллельно и перпендикулярно главной оси, а Q —мерой небольших изменений в спектре, вызванных ядерным квадрупольным взаимодействием. Все эти эффекты обсуждались в гл. 9. Последний член учитывает тот факт, что ядерный магнитный момент может непосредственно взаимодействовать с внешним полем Яд = Нц /, где у — гиромагнитное отношение ядра, а Р — ядерный магнетон Бора. Он описывает ядерный эффект Зеемана, который вызывает переходы в ЯМР. Зеемановское ядерное взаимодействие может влиять на спектр парамагнитного резонанса только в том случае, когда неспаренные электроны взаимодействуют с ядром в ядерном сверхтонком или квадрупольном взаимодействиях. Если даже такое взаимодействие и реализуется, то его величина пренебрежимо мала по сравнению с величинами других эффектов. [c.219]


    Для определения локальных концентраций радикалов необходимо изучить концентрационную зависимость ширин линий ЭПР. В ширины линий ЭПР спиновых меток и зондов наиболее важные вклады дают три типа взаимодействий электрон-ядерное сверхтонкое взаимодействие, которое модулируется молекулярным вращением и зависит от частоты, анизотропии и амплитуды вращения обменное межмолекулярное взаимодействие электронов, которое модулируется столкновением (или, точнее, встречами радикалов) и дает информацию о динамике трансляционного перемещения  [c.123]

    Анализ спектров ЭПР в жидкой фазе в принципе довольно прост. Интересно рассмотреть молекулу, имеющую неспаренный электрон, который взаимодействует с магнитными ядрами, в частности с протонами. В гл. 2 мы видели, что электронно-ядерное сверхтонкое взаимодействие в общем определяется выражением [c.100]

    При этом состояния квантовой системы являются собственными состояниями операторов и Собственное значение оператора Р равно Р (Р 1). Общий спин системы может принимать одно из нескольких значений. Спины / и 5 дают серию мультиплетов, соответствующих значениям Р, равным / Н- 5, / + 5 — 1,. .., I / —5 . Каждый мультиплет состоит из 2/ +1 подуровней с различными значениями Рх- Часто необходимо знать значение 1 8 (электронно-ядерное сверхтонкое взаимодействие) или Ь-8 (спин-орбитальное взаимодействие) для взаимодействующих состояний. Их легко найти  [c.321]

    Еще одна важная характеристика спектров ЭПР - энергия сверхтонкого взаимодействия, т.е. энергия магнитного взаимодействия электронов с ядрами. Например, ядро атома водорода, присоединенного к а-атому углерода, создает локальное магнитное поле у электрона, которое либо прибавляется к внешнему полю, либо вычитается из него в зависимости от ориентации ядерного спина. Это приводит к расщеплению зеемановских уровней электрона и появлению четырех уровней. Переходы ЭПР происходят без изменения ядерного спина, поэтому в спектре появляются две линии расстояние между ними есть величина локального поля протона у неспаренного электрона (Эрстед). Если ее умножить на величину g/4, получим энергию электрон-ядерного сверхтонкого взаимодействия в Герцах. [c.281]

    Прежде всего направим ось 2 системы параллельно магнитному полю. Далее сделаем два предположения. Первое предположение на квантование вектора электронного спина вдоль оси 2 не влияет ядерное сверхтонкое взаимодействие. Это очень хорошее приближе- [c.135]

    Теория электронного парамагнитного резонанса (ЭПР) в принципе аналогична теории ЯМР. Дополнительными величинами здесь являются ядерное сверхтонкое взаимодействие и -фактор. Сверхтонкое взаимодействие неспаренного электрона с ядром, обладающим спином /, приводит к расщеплению каждой линии в спектре ЭПР на 2/ + 1 линию. Это значит, что, например, неспаренному электрону, локализованному у атома азота (/ = 1), соответствует спектр, состоящий из трех линий. Как сверхтонкое расщепление, так и -фактор оказываются чувствительными к ориентации радикала во внешнем поле, к молекулярному движению и полярности локального окружения. Эти факторы в свою очередь влияют на характеристики сигналов ЭПР, что позволяет исследовать структуру, динамические свойства и полярность системы. [c.176]

    Таким образом, в результате переходов из Т+, Т в состояние 5 электрон и ядро образуют единую электронно-ядерную систему, в которой изменение электронного спина компенсируется изменением ядерного спина. Так как триплет-синглетный переход сопровождается изменением суммарного электронного спина, такой переход запрещен, однако наличие в системе электрон — ядро разности электронных уровней и сверхтонкого взаимодействия с ядром частично этот запрет снимает. [c.92]

    Сверхтонкое взаимодействие объединяет в себе контактное взаимодействие Ферми, дипольное взаимодействие ядерного спина с электронным и взаимодействие ядерного спина с орбитальным моментом [c.222]

    В результате химической реакции это соотношение нарушается, а восстанавливается оно путем перехода триплетной пары в синглетную (Т - -переход). Такие интеркомбинационные переходы (5 Т и 7 -> 5) запрещены правилами отбора, но происходят по ряду причин. Во-первых, в силу спин-решеточного взаимодействия путем обмена энергий между несущей спин частицей и окружающими ее молекулами растворителя (решетки). Время спин-решеточной релаксации (продольной Т и поперечной 72) достаточно велико (Ю -Ю с) и много больше времени существования радикальной пары (10 -10 с). Поэтому в низковязких жидкостях этот механизм перехода неэффективен. Во-вторых, 5-7-переход происходит в том случае, когда различаются частоты ларморовской прецессии спиновых моментов радикальной пары вокруг направления магнитного поля (Де-механизм). В этом случае индуцируется 3 7о-переход. Частота перехода равна разности частот ларморовской прецессии и прямо пропорциональна Ag = g - gl и напряженности поля Щ. Частота 5 -> 7о-перехода 10 рад/с достигается при Ag = 10 и Яо 10 А/м. В-третьих, причиной 5 -л 7-перехода является сверхтонкое взаимодействие спина электрона с ядерными спинами (СТВ-механизм). В отсутствие магнитного поля электронный и ядерный спины радикала прецессируют вокруг результатирующей суммарного спина. В ходе движения электронный и ядерный спины совершают взаимный переворот, в результате чего конфигурация пары 7+ переходит в -состояние. Скорость перехода зависит от констант СТВ. Для СТВ-механизма характерны времена перехода Ю -Ю с, т. е. соизмеримые с временем жизни радикальных пар. Таким образом, Б отсутствие магнитного поля СТВ-механизм является наиболее эффективным для 7 -переходов в радикальных парах. [c.197]


    Эти хорошо известные примеры указывают на то, что электронные и ядерные спины могут играть важную роль в реакционной способности молекул. Но эти примеры не привели еще к созданию спиновой химии. Как раздел науки, спиновая химия сформировалась тогда, когда было установлено, что в ходе элементарных химических актов состояние спинов может изменяться и, что особенно важно, были найдены пути целенаправленного влияния на движение спинов в ходе элементарных химических процессов, были найдены возможности спинового, магнитного контроля химических реакций. Решающую роль сыграли открытие явления химической поляризации электронных и ядерных спинов (1967), открытие влияния внешнего магнитного поля на радикальные реакции (1972) и открытие магнитного изотопного эффекта в радикальных реакциях (1976), Отмеченные спиновые и магнитные эффекты связаны с синглет-триплетны-переходами в спин-коррелированных радикальных парах (РП), индуцированных сверхтонким взаимодействием неспаренных электронов с магнитными ядрами и/или разностью зеемановских частот неспаренных электронов РП. Принципиально то, что эти эффекты возникают благодаря движению спинов в элементарном химическом акте. Таким образом, стало ясно, что в элементарных химических актах есть не только молекулярная динамика, а имеется еще и спиновая динамика. Спиновая динамика играет в элементарных химических актах двоякую роль. С одной стороны, спиновая динамика активно влияет на механизм и кинетику реакции. [c.3]

    Релятивистская К.м. рассматривает квантовые законы движения микрочастиц, удовлетворяющие требованиям теории относительности. Осн. ур-ния релятивистской К. м. строго сформулированы только для одной частицы, напр, ур-ние Дирака для электрона либо любой др. микрочастицы со спином /2 ур-ние Клейна - Гордона - Фока для частицы со спином 0. Релятивистские эффекты велики при энергиях частицы, сравнимых с ее энергией покоя, когда становится необходимым рассматривать частицу, создаваемое ею поле н внеш. поле как единое целое (квантовое поле), в к-ром могут возникать (рождаться) и исчезать (уничтожаться) др. частицы. Последоват. описание таких систем возможно только в рамках квантовой теории поля. Тем не менее в большинстве атомных и мол. задач достаточно ограничиться приближенным учетом требований теории относительности, что позволяет для их решения либо построить систему одноэлектронных ур-ний типа ур-ния Дирака, либо перейти к феноменологич. обобщению одноэлектронного релятивистского подхода на многоэлектронные системы. В таких обобщениях к обычному (нерелятивистскому) гамильтониану добавляются поправочные члены, учитывающие, напр., спин-орбитальное взаимодействие, зависимость массы электрона от его скорости (масс-поляризац. поправка), зависимость кулоновского закона взаимод. от скоростей заряженных частиц (дарвиновский член), электрон-ядерное контактное сверхтонкое взаимодействие и др. [c.365]

    В РП ядерные спины могут находиться в разных конфигурациях. Например, в сильных магнитных полях ансамбль РП с одним протоном можно разбить на два подансамбля. В одном подансамбле ядерный спин имеет проекцию +1/2, а в другом —1/2. Ансамбль РП с двумя протонами можно разбить на четыре подансамбля с проекциями спинов + 1/2, + 1/2 , + 1/2, -1/2 , -1/2, +1/2 , -1/2, -1/2 . В подансамблях с разной конфигурацией ядерных спинов сверхтонкое взаимодействие неспаренных электронов пары с магнитными ядрами индуцирует синглет-триплетные переходы в РП с разной эффективностью. В результате продукты рекомбинации РП обогащаются определенными конфигурациями ядерных спинов. Одновременно радикалы, избежавшие рекомбинации в клетке, вышедшие из клетки в объем раствора, обогащаются другими конфигурациями ядерных спинов. [c.81]

    Разобьем ансамбль РП на подансамбли с проекцией ядерного спина + 1/2 (состояние а) и -1/2 (состояние J3). За счет разности зеемановских частот неспаренных электронов радикалов пары и сверхтонкого взаимодействия в этих подансамблях РП будут происходить синглет-триплетные переходы. Матричные элементы S-T переходов в этих подансамблях равны, соответственно, [c.81]

    Каждый радикал, вообще говоря, имеет свой характеристический -фак-тор, поэтому радикалы имеют разные частоты (Иц. За счет сверхтонкого взаимодействия неспаренных электронов с магнитными ядрами радикала уровни энергии спина неспаренного электрона расщепляются. В результате в спектре ЭПР радикала появляется сверхтонкая структура (СТС). Каждая компонента спектра соответствует определенной конфигурации ядерных спинов. Ядерные спины в разных конфигурациях создают разные локальные поля для спина неспаренного электрона и, как результат, для разных конфигураций ядерных спинов электронный спин радикала имеет разную резонансную частоту. [c.91]

    Непрямое электронное спин-спиновое взаимодействие. При достаточно высокой разрешаюи1,ей способности спектрометра ЯМР становится заметным влияние на спектр других локальных полей. Последние возникают вследствие ферми-контактного взаимодействия ядерного спина, ориентированного во внешнем поле Н , со спином электрона. Это приводит к возникновению электронной поляризации, которая вновь воздействует на соседние ядра (сверхтонкое взаимодействие). Вследствие существования 2/ + 1 различных возможностей ориентирования спина ядра А 8 поле (см. стр. 249) по этому механизму расщепления, в м сте нахождения соседнего ядра X возникают точно такие же многочисленные локальные ПОЛЯ вызывающие расщепление сигнала. Это сверхтонкое расщепление характеризуется константой сверхтонкого взаимодействии J, величину которой измеряют в герцах. В простых случаях она соответствует расстоянию между соседними линиями в мультиплете сигнала (рис. 5.23, б). Если п эквивалентных ядер А взаимодействуют с ядром X, то на ядро А оказывают воздействие 9.nJ + 1 различных дополнительных полей и мультиплетность расщепления сигнала оказывается равной [c.258]

    Предположим, что таков же я-механизм передачи спин-спинового взаимодействия в спектроскопии ЯМР. Отличие состоит только в том, что поляризация спина возникает на одном протоне и передается на другой. Мы можем обсуждать а- и я-вклады в вицинальную константу спин-спинового взаимодействия даже в простом случае одной двойной связи. Схематически это представлено на рис. IV. 27, в. Расчет по методу валентных связей приводит к выводу, что я-вклад в вицинальную константу /(я) пропорционален произведению констант сверхтонкого взаимодействия а (С—Н) в спектре ЭПР, которые характеризуют магнитное взаимодействие между электроном и ядерным спином в группе =С—Н. Детальные расчеты показывают, что вклад /(я) в вицинальную константу спин-спинового взаимодействия составляет около 10% общей величины. Спин-спиновое взаимодействие через а-электроны быстро уменьшается с ростом числа связей, разделяющих взаимодействующие ядра. Поэтому можно предполагать, что вклад л-электронов в дальнее спин-спиновое взаимодействие имеет значительно большее значение. Это ясно показывают результаты, полученные для ненасыщенных соединений. В следующем разделе мы сначала обсудим ситуацию, существующую в насыщенных соединениях, а затем рассмотрим дальнее спин-спиновое взаи- [c.131]

    Кроме взаимодействия с магнитным полем, неспаренные электроны близких атомов или свободных радикалов взаимодействуют как между собой (диполь-дипольные и обменные взаимодействия), так и с парамагнитными ядрами, входящими в состав того же атома или молекулы (диполь-дипольное и контактное взаимодействие). Электронно-ядерные взаимодействия обусловливают наличие сверхтонкого расщепления в спектрах ЭПР. Гамильтониан сверхтонкого взаимодействия (СТВ) может быть записан как  [c.279]

    Приступая к обсуждению энергии переходов ЭПР, прежде всего познакомимся с электрон-ядерным сверхтонким взаимодействием (СТВ). Атом водорода (в свободном пространстве) представляет собой достаточно простую систему ввиду его сферической симметрии и отсутствия анизотропных эффектов. Рассматривая явление ЭПР, мы будем использовать оператор Гамильтона, называемый эффективным спин-гамильто-нианом, который количественно описывает все наблюдаемые эффекты и позволяет осуществить полную интерпретацию спектра ЭПР. [c.9]

    С тех пор получено много аналогичных данных, обзор которых представлен в разд. 2 этой главы. Там же описаны попытки объяснения наблюдаемых закономерностей в изменениях параметров спектров. Позже были обнаружены некоторые более тонкие эффекты. Так, Реддох и сотр. [8—10] показали, что образование ионных пар влияет на спектры ЭПР анион-радикалов даже и в тех случаях, когда непосредственного взаимодействия с катионом обнаружить не удается. Этот эффект возникает вследствие того, что электрон-ядерное сверхтонкое взаимодействие пропорционально локальной спиновой плотности в анион-радикале. Если последняя изменяется под действием поля, создаваемого катионом, то это приводит к изменению величины сверхтонкого взаимодействия. Распределение спиновой плотности, конечно, зависит и от растворителя, поэтому любые изменения в спектрах следует интерпретировать с большой осторожностью таким образом, и этот эффект не дает однозначного указания на образование ионных пар. Один из наиболее интересных результатов в этой области состоит в том, что образование локальных водородных связей с молекулами растворителя обычно приводит к более заметным возмущениям в спектре ЭПР, чем взаимодействие с катионами в отсутствие [c.198]

    Помимо зеемановского и сверхтонкого электронного взаимодействий в радикальных парах существенное значение имеют магнитное дипольное и электростатическое обменное взаимодействия между неспаренными электронами радикалов — партнеров пары, Дипольное взаимодействие вызывает дублетное расщепление в спектре ЭПР пары (тонкая структура), величина которого равна энергии дипольпого взаимодействия и зависит от ориентации электрон-электроппого радиус-вектора относительно направления внешнего магнитного поля. Это означает, что дипольное взаимодействие анизотропно (как и рассмотренное ранее дипольное электрон-ядерное сверхтонкое взаимодействие). [c.45]

    Другим двойным резонансным эффектом, детально изученным Фехером [137], является метод электронно-ядерного двойного резонанса (ЭЯДР). Если ядра в веществе связаны с электронами через сверхтонкое взаимодействие, то наблюдается расщепление ядерных уровней. В методе ЭЯДР линия электронного резонанса вещества насыщена. Подавая радиочастотную мощность определенной частоты на образец с тем, чтобы вызвать ядерные переходы между уровнями, образовавщимися за счет сверхтонкого взаимодействия, можно снять насыщение электронного резонанса и при определенной частоте появится сигнал ЭПР. Таким путем можно очень точно измерить энергию сверхтонкого взаимодействия электрона и ядра в веществе. Например, / -центрам в галогенидах щелочных металлов отвечает одна линия ЭПР, уширенная за счет сверхтонкого взаимодействия с большим числом соседних ядер, как, например, СР и в КС1. Фехер [138] определил это взаимодействие с помощью метода ЭЯДР, который позволил ему точно оценить природу волновых функций электрона для / -центра. Таким образом, метод ЭЯДР позволяет разрешить сверхтонкую структуру линий ЭПР, причем достигается разрешение порядка 10", поскольку лимитирующей является ширина линии ЯМР, а не ЭПР. [c.69]

    Достоинство метода электронного парамагнитного резонанса состоит в том, что он позволяет отличить изотропную часть тензора ядерного сверхтонкого взаимодействия, которая определяется только s-характером неспаренного электрона, от анизотропных частей тензора, которые содержат сведения о вкладе р- и -электронов в спиновую плотность неспаренного электрона. Данный метод нельзя непосредственно использовать для исследования молекул фторидов ксенона, поскольку все они диамагнитны однако при -[-облучении кристаллов Хер4 образуются радикалы, которые захватываются в кристалле в фиксированных ориентациях по всей вероятности, они представляют собой молекулы ХеР [18]. Для того чтобы определить характер орбитали неспаренного электрона, необходимо сравнить экспериментальные значения -фактора и тензоров сверхтонкого взаимодействия со значениями, рассчитанными с помощью соответствующих атомных волновых функций. Таким путем было найдено, что орбиталь неспаренного электрона состоит из 3% 25-орбитали фтора, 5% 5х-орбитали ксенона, 47% 2р-орбитали фтора и 36% 5р-орбиталн ксенона. Из-за отсутствия соответствующих волновых функций нельзя оценить вклад 5 -орби-талей ксенона. [c.407]

    Учебное пособие посвящено сжатому изложению-на современном уровне широкого круга вопросов теории, методов, аппаратуры и ряда применений структурного анализа (СА) к исследованию атомной и магнитной структуры твердых тел. Одновременно с дифракционными методами СА впервые дается иаложени теории и практики резонансного СА, основанного на эффекте Мёссбауэра. Последний существенно расширяет возможности исследования атомной и магнитнм структуры, внутрикристаллических полей, сверхтонких взаимодействий электронной и ядерной подсистем твердых тел. [c.2]

    Существует и другой механизм влияния магиитного поля на соотношение продуктов превращения свободных радикалов, образовавшихся в клетке,—так называемый СТВ-механизм, В этом случае действие магнитного поля обусловлено его влиянием на взаи.модействие спииов неспаренных электронов с ядерными спинами (сверхтонкое взаимодействие, СТВ). Теория этого взаимодействия, которую можно найти в специальных руководствах по магнитным эффектам в химических реакциях, показывает, что увеличение внешнего поля ослабляет взаимодействие. Поэтому обу-словлё1(иые сверхтонким взаимодействием переходы между синглетным и триплетным состояниями пары свободных радикалов замедляются с увеличением магнитной индукции внешнего магнитного поля. В этом случае увеличение внешнего магнитного поля оказывает на взаимодействие свободных радикалов в клетке влияние, противоположное тому, которое имеет место при Д -механизме. Каждый механизм преобладает в своем диапазоне значений магнитной индукции поля. Поэтому зависимость соотношения продуктов превращения внутри и вне клетки как функция магнитной индукции может проходить через максимум, В качестве примера можно привести реакцию бис-(пентафторфенил)-метилхлорида с бутиллитием  [c.173]

    С.-с.в. электронов и ядер приводит к расщеплению зеемановских уровней и соответствующих линий спектра ЭПР-т. наз. сверхтонкое взаимодействие. Выделяют два осн. слагаемых диполь-дипольное С.-с.в. ядер и электронов и контактное взаимод. Ферми. Первое слагаемое аналогично по форме (1), но вместо одного из электронных спинов, напр. Лу, стоит спин ядра вместо Гу стоит расстояние между электроном г и ядром а, к множитель (д Ив) заменяется на ц = йеИв З.И). где ц -ядерный магнетон, з,-д-фактор для ядра а. Для атома диполь-дипольное С.-с.в. дает осн. вклад в гамильтониан при условии, что атом находится в любом состоянии (Р-, О-и т.д.), за. исключением 5-состояния (или, в одноэлектронном приближении,-за исключением тех состояний, в к-рых есть открытая оболочка, включающая л-орбиталь). При усреднении величин УЛ по всем положениям электронов получаются постоянные С.-с.в. [ , (постоянные сверхтонкого взаимод.), значения к-рых состмля-ют обычно иеск. десятков (до сотни) МГц (1 см = = 3-10 МГц). [c.403]

    Рассмотренная картина должна быть дополнена взаимодействием протонов в фенильном радикале с электронными спинами. В соответствии с рассмотренным выше (разд. 2 гл. II) спин-спиновым взаимодействием ядерных моментов в данном случае также происходит изменение эффективной напряженности магнитного поля в месте расположения электрона (и соответственно изменение ларморовой частоты спина электрона). В фенильном радикале константа сверхтонкого взаимодействия (СТВ) й между электроном и ядром положительна. Поскольку ядернЫ спины могут быть параллельны или антипараллельны Во, тс необходимо учесть два типа фенильных радикалов те, для ко торых напрял<енность поля Во возрастает в результате СТВ-взаИ модействия (тип I), и те, для которых Во уменьшается (тип II) В соответствии с уравнением (I. 10) получим, что oi > on- Та КИМ образом, радикальные пары типа I будут достигать три нлетного состояния раньше, чем пары типа П. [c.346]

    Суть мультиплетного эффекта заключается в следующем. В радикале неспаренный электрон взаимодействует со спином ядра. Энергии этого сверхтонкого взаимодействия соответствует определенная ориентация ядерных спинов относительно магнитного поля. Химическая реакция нарущает это взаимодействие (исчезает неспаренный электрон), и меняется соотнощение между существующей в продукте и равновесной заселенностью уровней для каждой из ориентаций ядерных спинов в поле. В ЯМР-спекгре продукта линии поглощения обнаруживают поляризацию противоположного знака. Различают два типа мультиплетного эффекта ЕА, когда компонента спектра в низком поле излучает, а компонента в высоком поле поглощает, и АЕ, когда имеет место обратная ситуация. Чистый мультиплетный эффект наблюдается тогда, когда два реагирующих радикала имеют одинаковые -факторы. Тип спектра, возникающего при рекомбинации радикальной пары, зависит от знака константы а сверхтонкого взаимодействия и константы ядерного спин-спинового взаимодействия Удв- Ниже приведены данные о типах ЯМР-спектров для реакции типа [c.201]


Смотреть страницы где упоминается термин Электронно-ядерные (сверхтонкие) взаимодействия: [c.18]    [c.381]    [c.25]    [c.209]    [c.281]    [c.24]    [c.156]    [c.36]    [c.164]    [c.276]    [c.403]    [c.403]    [c.449]    [c.521]   
Смотреть главы в:

Строение и свойства координационных соединений -> Электронно-ядерные (сверхтонкие) взаимодействия




ПОИСК





Смотрите так же термины и статьи:

Сверхтонкое взаимодействие

Сверхтонкое взаимодействие взаимодействия

Теория сверхтонкого электрон-ядерного взаимодействия в радикалах

Электрон-ядерное взаимодействие и сверхтонкая структура спектра ЭПР



© 2025 chem21.info Реклама на сайте