Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий жаростойких сплавах

    Для защиты от газовой коррозии используют в основном жаростойкие сплавы. Так, например, чтобы уменьшить скорость окисления углеродистой стали при 900 °С в три раза, достаточно ввести в нее 3,5 % алюминия в четыре раза — 5,5 % алюминия. Кроме жаростойкого легирования используется метод, заключающийся в применении защитных атмосфер. Газовая среда не должна содержать окислителей, находящихся в контакте со сталью, и восстановителей в контакте с медью. В качестве защитной атмосферы при термической обработке и сварке применяют инертные газы — аргон и азот. Также можно осуществлять термическую обработку сталей в атмосфере, содержащей азот, водород и оксид углерода. Сварка титановых и алюминиевомагниевых сплавов должна осуществляться в защитной среде аргона. [c.52]


    При уменьшении этого соотношения содержаний хрома и алюминия жаростойкость сплавов возрастает (см. табл. 14.18). [c.425]

    Положительное влияние железа отмечено также при исследовании конструкционных жаростойких сплавов [42]. Данные по составу окалины показывают, что при увеличении суммарного содержания хрома и железа выше 30 % в окалине закономерно возрастает количество окиси алюминия (рис. 39), что свидетельствует об увеличении коэффициента [c.78]

    Сплавы системы Fe—Сг—Al являются самыми жаростойкими среди всех известных деформируемых сплавов. В СССР фундаментальные исследования системы Fe—Сг—Л1 проведены под руководством И.И.Корнилова. В широких пределах подробно исследовано влияние состава на структуру, физические, механические свойства и жаростойкость сплавов. Исследования показали, что при содержании алюминия порядка 5 % сплавы по жаростойкости значительно превосходят нихромы. [c.88]

    В химической промышленности сплавы на основе железо-хром-алюминий нашли широкое применение и служат заменителями нихрома. Это одни их самых жаростойких сплавов. Хромаль стоек до 1200 °С, фехраль, более дешевый — до 1000 °С. Оба сплава хорошо противостоят разрушению в окислительной атмосфере, менее стойки в восстановительной атмосфере (Н2, СО, Н2О) и неустойчивы [c.193]

    Алюминий характеризуется высоким сопротивлением газовой коррозии вплоть до температур его плавления (660 °С). Однако уже при температуре выше 300 С алюминию свойственна высокая ползучесть и совершенно недостаточная механическая прочность. Легирование алюминием многих сплавов (например, на основе железа) заметно повышает их жаростойкость и часто используется для этой цели. Наиболее распространенный вид противокоррозионной защиты алюминия и его сплавов—искусственное образование более сплошных, прочных и утолщенных слоев оксидов, что достигается обработкой в окислительных растворах или методом анодного оксидирования [c.265]

    Добавка алюминия к меди оказалась наиболее эффективной для улучшения жаростойкости сплавы с 6—8% А1 можно считать жаростойкими при температурах до 800° С [99]. Сплавы с 8% AI считаются также достаточно стойкими против воздействия хлора и хлористого водорода при 350° С [100]. [c.284]

    Для изготовления аппаратуры, подвергающейся действию коррозионноактивных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, кремний, алюминий применяются также сплавы на основе никеля или кобальта. Защита от газовой коррозии осуществляется, кроме того, насыщением в горячем состоянии поверхпости изделия некоторыми металлами, обладающими защитным действием. К, таким металлам принадлежат алюминий и хром. Защитное действие этих металлов обусловлено образование.м на их поверхносги [c.554]


    Алюминий широко применяют в авиационной и автомобильной промышленности в составе легких сплавов, отличающихся ценными механическими свойствами. Большой практический интерес представляет повышение жаростойкости сплавов при введении в них алюминия. Добавление алюминия в латунь, а также в оловянистую [c.237]

    Кроме редких металлов для производства жаропрочных и жаростойких сплавов нашли широкое применение никель, кобальт, марганец, хром и медь. Для конструкционных сплавов применяются алюминий, магний, бериллий и некоторые редкоземельные элементы, например, неодим. Как на сравнительно новые и очень перспективные конструкционные материалы следует указать на титан и его сплавы, обладающие наибольшей удельной прочностью и высокой коррозионной устойчивостью. [c.13]

    Уравнение (IV. 44) может найти применение при изучении диффузионных покрытий. Насыщение поверхности металлов алюминием, хромом, кремнием, никелем, т. е. довольно окалиностойкими материалами, позволяет существенно повысить жаростойкость изделий. В данном случае как бы создается на поверхности основного металла слой жаростойкого сплава, который и защищает деталь от окисления. Теория создания жаростойких сплавов и механизм их окисления хорошо разработаны качественно и количественно [14, 20— 26]. [c.189]

    Большой практический интерес представляет повышение жаростойкости сплавов других металлов при введении в них алюминия. О влиянии алюминия на жаростойкость железных сплавов уже говорилось выше. Добавление алюминия в латунь также повышает ее жаростойкость. [c.26]

    Введение в медь алюминия и бериллия увеличивает жаростойкость и жаропрочность меди, а алюминиевые бронзы с бериллием применяются как жаростойкие сплавы. [c.27]

    Основными способами защиты от газовой коррозии являются легирование металлов, создание защитных покрытий и замена агрессивной газовой среды. Для изготовления аппаратуры, подвергающейся действию коррозионно-активных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, кремний, алюминий применяются также сплавы на основе никеля или кобальта. Защита от газовой коррозии осуществляется, кроме того, насыщением в горячем состоянии поверхности изделия некоторыми металлами, обладающими защитным действием. К таким металлам принадлежат алюминий и хром. Защитное действие этих металлов обусловлено образованием на их поверхности весьма тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой. В случае алюминия этот метод носит название алитирования, в случае хрома — термохромирования. Для защиты используют и неметаллические покрытия, изготовленные из керамических и керамико-металлических (керметы) материалов. [c.687]

    Окисление металлов при их нагревании приносит промышленности большие убытки. Вследствие того что стойкость обычных железных сплавов против газовой коррозии крайне невелика, изделия, предназначаемые для работы при высоких температурах, изготовляют из специальных жаростойких сплавов или, если возмо жно, наносят покрытия, повышающие устойчивость обычных железных сплавов против действия газовой коррозии. Повышение жаростойкости металла достигается насыщением его поверхностного слоя алюминием (алитирование). кремнием (силицирование), хромом (термохромирование). Практикуются также процессы насыщения сплавами алюминий-кремний, хром-кремний. Для защиты стальных изделий от атмосферной коррозии применяют насыщение их поверхности цинком. [c.153]

    Для изготовления аппаратуры, подвергающейся действию коррозионноактивных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, кремний, алюминий применяются также сплавы на основе никеля или кобальта. Защита от газовой коррозии осуществляется, кроме того, насыщением в горячем состоянии поверхности изделия некоторыми металлами, обладающими защитным действием. К таким металлам принадлежат алюминий и хром. Защитное действие этих металлов обусловлено образованием на их поверхности весьма тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой. В случае алюминия этот метод носит название алитирования, в случае хрома—термохромирования. [c.548]

    Требование жаропрочности предъявляется к материалам, из которых выполняются нагруженные детали, работающие при высоких температурах, например детали конвейерной ленты, направляющие толкательной печи, нагревательные элементы с заметными нагрузками от собственного веса. Жаростойкость сплавов обычно достигается введением более или менее значительного количества хрома с добавкой в отдельных случаях вспомогательных легирующих элементов, например алюминия. [c.73]


    Алюминии и кремний увеличивают сто11кость снла ов г, окислительных средах. Эти элементы используют главным образом для юлучепия жаростойких сплавов и специальных чугунов. [c.205]

    Основные жароупорные материалы — это сплавы на базе железа со специальными легирующими добавками. Хром и алюминий придают сплавам жаростойкость — способность противостоять окислению при высоких температурах. Никель повышает механическую прочность сплава в условиях работы материала при высоких теш пературах и улучшает обрабатываемость. [c.41]

    НИХРОМ [от ни(кель) и хром] — жаростойкий сплав никеля с хромом один из никеля сплавов. Запатентован (1905) в США. Содержит 65—80% N1, Ю—30% Сг. Легируют сплав кремнием (до 1,5%) или алюминием (до 3,5%), микродобавками редко-и щелочноземельных элементов. Наиболее распространен сплав, содержащий 20% Сг. В СССР выпускают сплавы марок Х20Н80-П, Х20Н75Ю и ХН70Ю. П. отличается редким сочетанием высокой жаростойкости (до [c.85]

    Очень немногие люди могут утверждать, что своими собственными глазами видели такие металлы, как титан, неодим, литий, рубидий, европий или тантал, хотя эти элементы не так уж и редки. Например, природные запасы рубидия в 45 раз больше, чем свинца. А кто скажет, что свинец-редкий металл Выражение редкий означает только то, что до сих пор этот металл добывался лишь в относительно малых количествах, так как известны очень небольшие пригодные для разработки его месторождения. Сегодня эти так называемые редкие металлы - материалы для новой техники. Титан-коррозионно-устойчивый соперник алюминия и сталей, применение которого в химической промышленности особенно резко возросло в последние годы. Уран и торий - материалы энергетики будущего. Тантал-родоначальник особо прочных кислого- и жаростойких сплавов. Без платины, палладия и родия была бы немыслима химия катализаторов. Более 98% мировых запасов платиновых металлов, которые в 1971 г. исчислялись в 14 тыс. т, находятся в Южной Африке, Канаде и СССР. Мировое производство их составляет 119 т, причем 60% этого количества приходится на долю Советского Союза. Интересно то, что через 20 лет примерно половину производства благородных металлов будут составлять родий и палладий, выделенные из радиоактивных отходов ядерных реакторов. Желательно было бы из той же атомной мельницы получать теллур-99. Этот элемент-не только ценный сверхпроводник, но и отличный ингибитор коррозии. При незначительной его концентрации (до 0,1 мг/л) железо не ржавеет ни в воде, ни в солевых растворах даже при повышенных температурах. [c.28]

    Алюминий резко снижает скорость окисления. Добавка 1% А1 приводит к снижению скорости окисления на 40 7о- Алюминиевая бронза (с 8%А1) не обнаруживает каких-либо изменений при 800° С. Бериллий действует аналогично алюминию, но сильнее добавка 2,4% Ве позволяет получить практически жаростойкий сплав (рис, 3,33, 6), В отношении образования окалины латунный сплав с 20% 2п примерно соответствует бронзе с 1% Ве 1% бериллие-вой. Латунь с 40% 2п несколько менее стойка. Окалина состоит исключительно из окиси цинка. [c.273]

    Часто РЗМ образуют с вредными примесями тугоплавкие соединения, что устраняет легкоплавкие включения серы, фосфора, мышьяка в стали и в сплавах никеля. В медных сплавах РЗМ устраняют включения свинца и висмута. У сплавов на основе хрома следы РЗМ улучшают структуру поверхностной окисной пленки, а это увеличивает жаростойкость сплавов. В отдельных случаях микродозы РЗМ повышают температуру рекристаллизации, что способствует жаропрочности металла. Если добавить неодим в сплавы на основе магния, титана и алюминия, то существенно возрастет предел их длительной прочности при высоких температурах. [c.145]

    Сопротивление окислению жаростойких сплавов ири высоких температурах, как было указано ранее, обусловлено образованием иа иоверхности металла защитной хорошо сцепленной с ним окисной пленки. Существует большое количество легированных стале( 1, обладающих высокой жаростойкостью в сочетании с жароирочностью при нагреве до 1200° С и выше. Осиов-иы.ми легирующими. элементами, иридаюиичми жаростойкость келезным сплавам, являются хром, кремний, алюминий, никель н некоторые другие, добавка которых обусловливается характером и составом газовой среды, необходимостью улучшения меха1 ических н других свойств силава (см. гл. X). [c.234]

    Бериллий, образуя сплавы со многими металлами, придает им твердость, прочность, жаростойкость и коррозионную устойчивость. Сплавы меди с 1—3% Ве, называемые бернллневыми бронзами, прн старении становятся прочнее. Они в 2 раза тверже нержавеющей стали. Не искрят при ударе, в 2,5 раза быстрее, чем сталь, проводят звук. Поэтому нз них делают пресс-формы, ударные Наконечники шахтерских молотков, гонги, музыкальные трубы, подшипники, пружины, шестерни. Сталь с добавкой 1% Ве сохраняет упругость при температурах красного каленйя и называется рессорной сталью. Легкие, прочные и жаростойкие сплавы бериллия на основе алюминия, магния нли титана применяют в авиа- и ракетостроении. [c.299]

    Общий характер влияния алюминия на жаростойкость сплавов никель-хром при 1200°С показан па рис. 35. Результаты получены путем изотермического окисления образцов в атмосфере очищенного кислорода в течение 10 ч (данные A. . Тумарева и Л.А. Панюшина). Из рис. 35 видно, что алюминий повышает жаростой-костьо Однако судить о количествен- [c.63]

    Для расчета срока службы нагревателей иэ железохромоалюминиевых сплавов применен иной метод [ 83]. В основу расчета положена зависимость изменения концентрации алюминия в сплавах в процессе эксплуатации при различных температурах, поскольку жаростойкость железохромоалюминиевых сплавов, в первую очередь, определяется концентрацией алюминия. Показано, что иэменение концентрации алюминия и [c.136]

    ФЕХРАЛЬ [от лат. е(ггиш) — железо, хр(ом) и ал(юминий)] — жаростойкий сплав на основе системы железо — хром — алюминий. В СССР выпускают сплав марки Х13Ю4, содержащий 12—15% Сг, [c.650]

    ИЛИ азота, ухудшающего механические свойства сплава. С этой точки зрения полезно легирование металлами, снижающими растворимость кислорода и азота, напри мер, молибденом и вольфрамом. Максимальной жаростой костью обладают сложнолегированные сплавы. Напри мер, повышение жаростойкости сплавов НЬ—Т1 дости гают легированием их алюминием, вольфрамом, хромом цирконием, никелем и иттрием. Сплав на основе ниобия содержащий Т — 25, А1 — 8, V — 0,2 %, окисляется при 1100 °С со скоростью 0,15 мг-см -ч . Скорость окисления при 1100 °С сплава, содержащего Т1 — 20, W— 10, N1 — 4%, равна 1,4 мг-см >ч" . Таким образом, достигнуто примерно 100-кратное увеличение жаростойкости ниобия. Однако жаростойкое легирование часто приводит к снижению жаропрочных свойств. Этого недостатка лишены сплавы ЫЬ——Т1, дополнительное легирование которых металлами группы железа снижает скорость окисления при 1200 °С до 2,7 мг-см -4" . К этой [c.429]

    Сплав ЭИ894 отличается от сплава ВЖ98 более низким содержанием хрома (22,4 о) и вольфрама (5,7%), отсутствием молибдена и более высоким содержанием кремния (1%), железа (9,7 .э), алюминия (3,1%) и титана (1,1/о). Его жаростойкость во всех трех атмосферах при 900 и 1000° близка к жаростойкости сплава ВЖ98, по ниже ее при 1100 и 1200° (фиг. 3 и табл. 4). [c.35]

    Содержание в этом сплаве кремния, хрома, железа, алюминия и титана ниже, а никеля выше, чем в сплаве ЭИ894, совсем отсутствует вольфрам, но содержится 1% МЬ и 2,1% Мо (табл. 1). Жаростойкость сплава при 900 выше, а при более высоких температурах ниже, чем у сплава ЭИ894 (фиг. 3 и табл. 4), и заметно возрастает с увеличением окислительной способности атмосферы (фиг. 5). [c.36]

    Этот сплав отличается от сплава ЭИ894 значительным содержанием железа, более низким содержанием никеля, кремния, алюминия и вольфрама (табл. 1). Жаростойкость сплава в воздухе несколько ниже, а в продуктах сжигания газа с а = 1,5 и 0,8 —несколько выше, чем сплава ЭИ894 (фиг. 3 и табл. 4). [c.36]

    Стеклометаллические покрытия состоят из стекловидной фазы и тонкодиснерсных металлических наполнителей (порошкообразные никель, нихром, хром, феррохром, алюминий, сложные сплавы и др.). Они характеризуются повышенной ударной прочностью, некоторые из них сравнительно жаростойки. На сталях испытаны покрытия 50-0, А-2, В, В-1 на чугуне — 30-70 и др. [c.264]

    Основные компаненты для жаростойких сплавов на железной основе — хром, кремний, алюминий, так как они сильно повышают защитные свойства высокотемпературной окалины. Добавки молибдена, а также кобальта и вольфрама позв оляют повысить жаро(проч1ность сплава. [c.65]

    Изделия, предназначенные для работы в жидких средах (вода, растворы солей, кислот, щелочей), защищают металлическими и неметаллическими по рытия1ми. Для работы в условиях высоких температур применяют изделия, изготовленные из хромистых, хромоникелевых и других сплавов. Однако специальные жаростойкие сплавы дороги, поэтому в промышленности получили распространение расомотренные ранее диффузиоганые окалиностойкие покрытия простой углеродистой стали хромом,, алюминием, кремнием. [c.85]

    Алюминий вводится в сталь главным образом для раскисления и для регулирования величины зерна аустенита. Он является сильным раскислителем и дегазификатором при выплавке стали. Алюминий вводится в конструкционные марки сталей, предназначаемые для целей азотирования, и некоторые сорта жаростойких сплавов. [c.170]

    Нагревательные элементы изготавливаются главным образом из хромо-железо-алюминие-вых сплавов, обладающих большим омическим сопротивлением и высокой жаростойкостью (нихромы или фехрали). Тепло, выделяющееся при прохождении электрического рис. тока через нагревательные элементы, передается стенкам обогреваемого аппарата /. Печь /-обогреваемый аппарат , з- [c.339]


Смотреть страницы где упоминается термин Алюминий жаростойких сплавах: [c.205]    [c.237]    [c.34]    [c.127]    [c.365]    [c.277]    [c.131]    [c.365]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий в сплавах

Жаростойкость



© 2025 chem21.info Реклама на сайте