Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплав железа кремния алюминия

    Большая часть алюминия применяется в виде его сплавов с магнием, медью, кремнием, цинком, никелем, железом и другими металлами. Наиболее важные — сплавы типа дюралюминия (я 94% А1, 4% Си, 5% Mg и 0,5% Мп), литейные сплавы — силумины ( — 12% 51) и сплавы с магнием ( 10% Mg). По своим ценным свойствам сплавы алюминия занимают второе место после сплавов железа, причем области применения их неуклонно расширяются. Особенно возросло их применение в транспорте и строительном деле. Благодаря таким свойствам, как малая плотность, [c.476]


    Мухина 3. С. и Володарская Р. С. Методы анализа магниевых сплавов. [Определение кремния, алюминия, меди, марганца, цинка, железа, никеля]. Тр. (Всес. н.-и. ин-т авиац. м-лов ВИАМ ), 1949, 2, с. 21—25. 4869 [c.190]

    В настоящее время алюминий получают электролитическим методом, так как попытка восстановления глинозема углем при высокой температуре ведет к образованию карбида. Восстановлением руд в мощных электропечах получают не чистый алюминий, а сплавы алюминия с медью и железом, кремнием, марганцем и другими металлами. [c.477]

    Анализ алюминия и его сплавов обычно сводится к определению железа, кремния, меди, магния, марганца, реже калия, натрия, цинка, кальция, никеля. Добавление указанных элементов изменяет свойства чистого алюминия. Так, марганец повышает устойчивость к коррозии, но понижает пластичность магний уменьшает массу и повышает прочность кремний увеличивает прочность, но уменьшает пластичность медь увеличивает прочность. Состав некоторых алюминиевых сплавов приведен в табл. 36. [c.377]

    Магнитострикция и константа анизотропии сплавов железо — кремний — алюминий при оптимальном составе близки к нулю.) [c.551]

    В качестве проводников используются различные металлы и их сплавы. Так, в термопарах, служащих для измерения температур до 600° С, одним проводником служит хромель (сплав никеля, хрома и железа), а другим копель (сплав меди и никеля). Для температур до 700° С применяются железо-копелевые, до 1000° С — хромель-алюмелевые (алюмель — сплав никеля, кремния, алюминия, железа и марганца), до 1300° С и кратковременно до 1600° С — [c.412]

    Алюмель — сплав никеля, кремния, алюминия, марганца и железа. [c.96]

    Ванадий в своих природных соединениях всегда сопутствует железным рудам. Это объясняется близостью радиусов (0,65 А) и Ре (0,67 А). Обычно получают сплав железа с ванадием (феррованадий с содержанием ванадия 35—50% и выше). Для этого используют алюминотермический метод (восстановление металлов из их окислов металлическим алюминием) или силикотермический метод (восстановление ванадия из УаО., сплавом железа с кремнием). [c.490]

    Поверхностное натяжение, краевые углы в адгезия к окиси алюминия сплавов железо — кремний [c.100]

    Чистое железо имеет низкое электросопротивление и большие потери на вихревые токи. Для снижения этих потерь применяют сплавы железо-кремний, железо-крем-ний-алюминий, железо-никель, иногда для улучшения технологических свойств в железо вводят около 0,03 % фосфора. [c.425]


    Огромное значение имеют сплавы на основе алюминия и железа. В состав некоторых сплавов входят неметаллы, например углерод, кремний, бор и др. [c.156]

    После завершения окислительных реакций в жидком сплаве содержится еще закись железа, от которой его необходимо освободить. Кроме того, нужно довести до установленных норм содержание в стали углерода, кремния и марганца. Этого достигают, добавляя так называемые раскислители, например, ферромарганец (сплав железа с марганцем), ферросилиций, алюминий. Марганец, например, реагирует с закисью железа  [c.175]

    На технологию и качество карбида кремния влияют примеси, содержащиеся в щихте. Они способствуют переходу окиси кремния в устойчивую форму и снижают скорость реакции. Вредными примесями в щихте являются окислы алюминия, железа, магния, кальция и других металлов, а также сера. Окиси глинозема, магния и кальция склонны к образованию силикатов, способствующих спеканию шихты, а окись железа приводит к образованию сплавов железа с кремнием. Расход электроэнергии па 1 т карбида кремния— от 8000 до 11000 квт-ч, что составляет 25—34% всех затрат. Суммарный расход углеродистого материала (антрацит-Ь нефтяной кокс) мало зависит от сорта производимого карбида кремния и колеблется в сравнительно узких пределах (1200—1300 кг/т готового продукта). Из этого количества 50% падает на нефтяной кокс. В дальнейшем предполагается увеличение этой доли, что диктуется экономическими соображениями. Стоимость углеродистого материала составляет 25% от заводской себестоимости, поэтому затраты на восстановитель весьма ощутимо сказываются на стоимости готового продукта. [c.32]

    Большая часть алюминия применяется в виде его сплавов с магнием, медью, кремнием, цинком, никелем, железом и другими металлами. Наиболее важными являются сплавы типа дюралюминия ( 94% А1, 4% Си 0,5% Mg и 0,5% Мп), литейные сплавы — силумины ( 12% 51) и сплавы с магнием ( 10% Мд). По своим свойствам сплавы алюминия занимают второе место после сплавов железа, причем области применения их неуклонно расширяются. Особенно возросло применение сплавов алюминия в транспорте и строительстве. Благодаря малой плотности, высокой Электропроводимости и теплопроводности, исключительной пластичности чистого металла алюминий используют для изготовления электрических проводов (взамен меди), теплообменников, конденсаторов и др. Алюминий применяют в качестве раскислителя сталей, восстановителя при получении ряда металлов методом алюмотермии. [c.452]

    Повышение коррозионной устойчивости сплавов железа путем обогащения их поверхностного слоя хромом, алюминием или кремнием [c.105]

    Сталь — сплав железа с углеродом, с примесями марганца, кремния, серы, фосфора. Обычная углеродистая С. содержит 0,05—1,5 % С, 0,1—1 % Мп, до 0,4 % 31, до 0,08 % 5, до 0,18 % Р. При большем содержании примесей или при добавке других специальных примесей С. называется легированной. Легирующие элементы Сг, N1, Мп, Си, , Мо, V, Со, Т1, Nb, А1, 2г, Та. Легированные С. обладают высокими механическими и физико-химическими свойствами. Из них изготавливают детали машин, инструменты, резцы, штампы и др. Нержавеющие стали, содержащие до 12 % хрома, устойчивы против коррозии в атмосфере, в кислотах, щелочах, растворах солей. Добавление в С. хрома, кремния и алюминия делает ее жаропрочной, а насыщение поверхностного слоя стали азотом (азотирование) резко увеличивает износоустойчивость стальных изделий. С. обычно изготовляют из чугуна путем частичного удаления из него углерода окислением этот способ получил наибольшее распространение в современной металлургии. Другой путь получения С. состоит в восстановлении железа в железной руде и введении в него требуемого количества углерода и других примесей. [c.126]

    Широко применяются сплавы на основе алюминия с добавками (для увеличения прочности) меди, кремния, титана, железа, никеля, марганца, цинка, магния. Кроме того, производят сплавы на основе перечисленных элементов, в которые алюминий добавляют в качестве легирующей добавки. Особенностью алюминиевых сплавов является легкость. Их производство стимулировалось в основном развитием авиации. В настоящее время они применяются во многих других областях народного хозяйства. [c.50]

    Сплавы цинко-алюминиевые. Спектральный метод анализа Магний первичный. Спектральный метод определения натрия и калия Магний первичный. Спектральный метод определения кремния, железа, никеля, алюминия, меди, марганца и титана [c.821]

    Сплав железа с углеродом при содержании последнего более 1,7% называют чугуном. Чугун тверд, но хрупок и не поддается ковке или прокатке. Он используется главным образом для отливок тяжелых машинных частей (станин, маховых колес и т. п.) и на переработку его на сталь. Для улучшения свойств чугуна его легируют, что обеспечивает возможность широкого использования его в промышленности. Легирование чугуна и стали обычно проводят хромом, никелем, марганцем, кремнием, молибденом, вольфрамом, ванадием, титаном, алюминием, ниобием, кобальтом, медью, бором, магнием. От качества и количества легирующих элементов зависят свойства чугуна и стали. Требования к химическому составу выпускаемого промышленностью чугуна определяются условиями его назначения. Так, например, жаростойкий чугун должен соответствовать по химическому составу требованиям ГОСТ 7769—63, отливки из ковкого чугуна ГОСТ 1215—59 (табл. 20, 21). [c.270]


    Сплавы, применяемые в литом состоянии. К этой группе магнитотвердых материалов относятся а-сплавы системы железо — никель алюминий, а также их модификации, получаемые за счет введения в них кремния, меди, кобальта и других элементов. [c.560]

    На рис. 1 показано изменение предела прочности сплавов титана с алюминием, хромом, железом, кремнием и бором в зависимости от температуры  [c.16]

    Для протекторов при защите подземных сооружений часто используют магний. Чистые металлы - магний, алюминий, цинк - не получили практического применения для изготовления протекторов, так как магний имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации. Введение добавок позволяет получить сплавы с более отрицательными, чем у основного металла, потенциалами, которые могут оставаться активными, равномерно разрушаться. В магниевые сплавы для протекторов вводят добавки алюминия, цинка и марганца. Алюминий улучшает литейные свойства сплава и повышает механические характеристики, но при этом немного снижается потенциал. Цинк облагораживает сплав и уменьшает вредное влияние таких примесей, как медь и никель, позволяя повышать их критическое содержание в сплаве. Марганец вводят в сплав для осаждения примесей железа. Кроме того, он повышает токоотдачу и делает более отрицательным потенциал протектора. Основные загрязняющие примеси в сплаве - железо, медь,, никель, кремний, увеличивающие самокоррозию протекторов и снижающие срок их службы. [c.158]

    Силикокальцием называются сплавы кремния с кальцием и небольшим количеством железа и алюминия, применяющиеся в качестве комплексных раскислителей при плавке стали. [c.242]

    Из серого чугуна изготовляют, кроме того, опоры для мешалок, чанов, автоклавов и других сосудов. Зубчатые колеса для более легкого хода должны быть фрезерованы желательно также все крупные приводы снабжать шарикоподшипниками, что экономит энергию и смазочные материалы. Станина и неподвижные (головные) плиты фнльтр-прессов отливаются из чугуна, но струны не делают из чугуна, так как чугун не обладает достаточной прочностью к растяжению. Автоклавы, рассчитанные на рабочее давление до 40 ат, изготовляются из серого чугуна. Для работы при более высоких давлениях применяют стальное литье, так как чугунное литье при отливке деталей слишком больших размеров пузырится и, кроме то го, пришлось бы делать слишком толстые стенки. Стальной автоклав, изображенный на рис. 43. имеет, например, толщину стенки 80 мм и весит 10 т. Автоклав диаметром 1200 мм, рассчитанный на рабочее давление до 40 ат, изготовленный из серого чугуна, должен иметь стенки толщиной около 400 мм и весить около 60 г. Такие чудовищные аппараты технически неприемлемы, хотя бы из-за огромных напряжений, возникающих при нагревании. Из серого чугуна изготовляют также котлы для плавления в производстве нафтолов добавка 1—3% никеля чрезвычайно повышает устойчивость чугуна к щелочам. Расплавленные щелочи, особенно едко е кали, вызывают сильную коррозию железа. Чугун, легированный 12% кремни я и 4—6% алюминия, полностью или частично устойчив к кислотам. Этот сплав железа—кремния—алюминия довольно сильно разрушается только соляной кислотой, которая вообще является кислотой, наиболее сильной по своему корродирующему действию. Этот сплав впервые был применен в Англии под названием а й р о н э к и т э н-т а й р о н . [c.322]

    Кох [16] изучил влияние примесей в алюминии на температуру его хлорирования и нашел, что температура улетучивания чистого алюминия понижается от примесей, особенно от присутствия железа и кремния, причем в то же время усиливается улетучивание хлористого алюмипия. Примеси также препятствуют образованию защитной плеики на расплавленном металле. Варрен [17] описывает способ получения хлористого алюминия хлорированием измельченного сплава железа с алюминием. Если сплав перед хлорированием смешать с хлористым натрпс м, то возгоняется хлористая алюмиххиево-натриевая соль. [c.856]

    Основные методы защиты металлов от окисления при высоких температурах основаны на легировании, т. е. на получении сплавов, более стойких к газовой коррозии, чем обычные, не содержащие специальных легирующих примесей. Кривая рис. 52 показывает, как существенно по-выщается коррозионная устойчивость стали при легировании ее сравнительно небольшими количествами алюминия. На рис. 53 приведены обобщающие данные по влиянию легирования железа кремнием, алюминием, хромом, титаном и никелем на повышение жаростойкости сплава [6]. Очевидно сильное влияние 51, А1 и Сг на повышение жаростойкости стали и малое влияние N1 и Т1 (при исследованных содержаниях этих легирующих примесей). [c.89]

    Основная часть никеля (85—87%) расходуется для- производства сплавов с железом, хромом, медью и другими металлами. Эти сплавы отличаются высокими механическими, антикоррозионными, магнитными и электрическими свойствами. Сплавы никеля с алюминием (а также с магнием и кремнием) используются в качестве исходного вещества для получения никеля Ренея — никелевого катализатора скелетного типа, образующегося при действии щелочи на эти сплавы. [c.286]

    При термодиффузионном способа нанесения покрытия изделие помещают в смесь, содержащую порошок металла покрытия. При повышенной температуре происходит диффузия наносимого металла в основной металл. Таким путем получают покрытия алюминием (али-тирование) и цинком. Иногда покрытия наносят при реакциях в газовой фазе. Например, при пропускании парообразного СгОг над поверхностью стали при 1000° С образуется поверхностный сплав Сг—Ре, содержащий до 30% Сг ЗСгС1г + 2Ре = 2РеС1з + ЗСг. Подобные поверхностные сплавы железа с кремнием, седержащие до 19% 81, могут быть получены при взаимодействии железа с при 800—900° С. [c.219]

    Во время электролиза образующийся металл перио. дически удаляется со дна электролизера, он содержит обычно 98,5—99,8% алюминия, механические примеси (электролит, окись алюминия, уголь, адсорбированные газы) и сплавы с элементами, которые встречаются в алюминиевых рудах (З), Ре). Механические примеси и адсорбированные газы обычно удаляют переплавкой алюминия-сырца, а железо, кремний удаляют последующим электролитическим рафинированием. После электролитического рафинирования получают алюминий [c.333]

    Галлий, попавший в металлический алюминий, удаляется из последнего только тогда, когда алюминий подвергают электролитическому рафинированию. Рафинируют алюминий по так называемому трехслойному методу. В качестве анода служит первичный алюминий, к которому для утяжеления добавлено 35% меди (анодный сплав — нижний слой). Средний слой — электролит, состоящий из фторидов алюминия и натрия и хлоридов бария и натрия. Состав электролита подобран так, чтобы его плотность была меньше плотности анодного сплава и больше плотности чистого расплавленного алюминия. Верхний слой (катод) — чистый алюминий ток отводится от него графити-рованными электродами. Во время работы ванны в анодный сплав непрерывно добавляют первичный алюминий так, чтобы концентрация меди оставалась постоянной. Более электроположительные элементы — медь, железо, кремний, а также галлий — не растворяются на аноде и в процессе электролиза собираются в анодном сплаве. По мере накопления примесей в анодном сплаве в загрузочном кармане, где температура ниже, из сплава выделяется твердый осадок интерметаллических соединений РеА1581, СизРеЛ1,и др., который извлекается из ванны. По мере накопления таких медистых осадков их загружают в специальную ванну, работающую так же, как и рафинировочная, для извлечения из них алюминия. В результате получается отработанный анодный сплав, содержащий 6—12% алюминия, 15—20% кремния, 12— 15% железа, 45—55% меди и 0,4—0,5% галлия, который может быть использован для извлечения галлия. [c.250]

    Сплавь алюминия с марганцем обычно состоят из бедного марганцем твердого раствора а (содержащего 0,05% марганца) н фазы MnAle. Вредной примесью в алюминиево-марганцевистых сплавах является железо, которое способствует образованию хрупкого химического соединения (РеМп)А1б п резкому снижению пластических свойств сплава. Примеси кремния в этом случае влияют положительно, так как кремний связывает железо в более легко деформирующиеся фазы типа AlFeSi. [c.166]

    Основная часть никеля (85—87%) расходуется на производство сплавов с железом, хромом, медью и другими металлами. Эти сплавы отличаются высокими механическими, антикоррозионными, магнитными и электрическими свойствами. Сплавы никеля с алюминием (а также с магнием и кремнием) используют в качестве исходного вещества для получения никеля Ренея — никелевого катализатора скелетного типа, образующегося при действии щелочи на эти сплавы. Никель применяется в производстве щелочных аккумуляторов и в гальванотехнике. В 1980 г. производство никеля составило в капиталистических и слаборазвитых странах около 1 млн. т, в ближайшие 7—10 лет оно возрастет еще на 7% в год. [c.403]

    СостоЯ(Ния пассивности можно достигнуть не только изменением воздействующей внешней среды, но и введением в структуру твердого раствора слабо пассивирующегося основного металла сильно пассивирующихся элементов. Например, при растворении в железе таких сильно пассивирующихся элементов, как хром, кремний, алюминий, можно получить сплав, приближающийся по стойкости к легирующим элементам. На этом принципе основано получение коррозионноустойчивых и нержавеющих сталей. [c.73]

    Так, при определении одного и того же элемента (например, кобальт, цинк, железо) в крови, пищевых продуктах или сплавах и минералах способ разложения образцов определяется соотъетствешю органической или неорганической природой объекта. Разложение и перевод в раствор проб силикатов проводят в зависимости от определяющего их состав соотношения MeO/SiOj. Если в составе силиката преобладают оксиды металлов, то пробу растворяют в кислотах, если — оксид кремния, то проводят сплавление или спекание. При определении в силикате содержания железа, титана, алюминия пробу сплавляют со щелочными плавнями при определении суммы щелочных металлов спекают с СаО и a Oj. [c.70]

    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]

    Для синтеза аммиака предлагался катализатор, полученный окислением расплавленного железа или сплавов железа в токе кислорода и нагреванием в тигле, покрытом массой, аналогичной приготовляемой [20]. Катализатор для конверсии водяного газа с водяным паром при 320--330°, стойкий по отношению к таким ядам, как сероводород, приготовляют растворением 100 кг железа в разбавленной азотной кислоте, раствор обрабатывают 10 кг хромовой кислоты и 20 кг хромовокислого калия, осаждают аммиаком при 60 —80°, осадок промывают, смешивают с 1 кг углекислого бария и сушат [318]. Другой активный, стойкий катализатор для синтеза аммиака при температуре 550° и давлении 250 ат [скорость на объем газовой реагирующей смеси (ЗН + Ng 2NH3) и часовая объемная скорость реагентов равна 15 000] готовят из чистого железа или железосодержащих руд, окисленных в токе кислорода, с добавкой активаторов, например окиси алюминия или азотнокислого калия. Рекомендуется выдерживать расплавленную жидкость при высокой температуре в течение некоторого времени в токе кислорода. При применении железной руды (магнетита или магнитного железняка), содержащей много примесей (4,0% двуокиси кремния, 4,2% окиси магния, 2,8% окиси алюминия, 0,8% окиси кальция и 0,3% марганца), ее плавят на кислородно-ацетиленовой горелке и вводят активаторы, расплавленную массу выдерживают при высокой температуре с тем, чтобы довести до конца реакцию между окисью железа и активатором и удалить серу и фосфор. При приготовлении катализаторов из железной руды рекомендуется смешивать половину количества актцватора с окисью железа, добавляя вторую половину малыми порциями в частично расплавленную массу. Например, 2 кг магнитного железняка смешивают с 50 г окиси алю-Ашния и 100 г азотнокислого калия (добавляемого малыми порциями), смесь частично расплавляют и обрабатывают избытком кислорода. Приготовленный таким образом катализатор выгружают и процесс повторяют [256]. [c.284]

    Альсиферы Сплавы железа с более высоким содержанием кремния (до 9%) и сплавы, легированные алюминием (до 7%), выпускают в виде литых магнитных [c.550]


Смотреть страницы где упоминается термин Сплав железа кремния алюминия: [c.138]    [c.530]    [c.737]    [c.735]    [c.87]    [c.1777]    [c.1777]    [c.80]    [c.173]    [c.80]    [c.403]    [c.51]   
Основные процессы синтеза красителей (1952) -- [ c.322 ]

Основные процессы синтеза красителей (1957) -- [ c.322 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий в сплавах

Железо алюминии

Железо сплавы

Сплавы алюминия и железа

Сплавы кремния



© 2025 chem21.info Реклама на сайте