Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлор, воздействие

    Напротив, натриевые соли моносульфокислот парафинов от декана до эйкозана (как уже сообщалось в главе Сульфохлорирование ) могут со значительным успехом применяться в качестве моющих и пенообразующих средств, эмульгаторов, смачивателей, флотационных реагентов и т. п. и были уже много лет назад внедрены в практику. Правда, эти сульфокислоты были получены по реакции сульфохлорирования, которая, как известно, заключается в совместном действии на парафиновый углеводород двуокиси серы и хлора при одновременном воздействии ультрафиолетовых лучей. Продуктами последней реакции являются алифатические сульфохлориды, которые могут быть затем гидролизованы щелочами в сульфонаты. [c.482]


    Метод определения содержания хлора (ГОСТ 7188—54) заключается в сжигании испытуемого продукта со смесью Эшке (смесью окиси магния и углекислого натрия), воздействии на образовавшиеся хлориды раствором азотнокислого серебра и оттитровывании избытка азотнокислого серебра раствором роданистого аммония. [c.224]

    Так, произошла авария в производстве хлорбензола на стадии хлорирования бензола. Причина аварии — коррозия стального хлорного трубопровода. Хлорирование бензола осуществляли в хлораторе (вертикальном цилиндрическом аппарате, футерованном кислотоупорной плиткой), нижняя часть которого была заполнена железными кольцами Рашига. Во время работы хлоратора хлоргаз внезапно стал проходить через коллектор хлора, а затем через коллектор бензола, что привело к воспламенению бензола. Под воздействием пламени расплавился трубопровод около хлоратора и усилилась утечка бензола. Пламя распространилось на [c.116]

    Хлор воздействует на легкие человека, вызывая в них обильное выделение жидкости. Эта жидкость изымается из круга кровообращения, что приводит к загущению крови. Самым простым способом оказания первой помощи лицами, не имеющими медицинского образования, является подача кислорода в легкие. [c.375]

    Для предотвращения резких колебаний вакуума в хлорных и водородных коллекторах и устранения связанных с этим нарушений режима и взрывов хлороводородной смеси в ваннах хлорные и водородные коллекторы оснащают автоматическими регуляторами давления, поддерживающими в коллекторах постоянство и режимные соотношения вакуума. В качестве регуляторов разрежения применяют гидравлические приборы, пневматические и электронно-пневматические регуляторы со вторичным прибором ЭПИД. На рис. 10 показана общая схема автоматического регулирования разрежения хлора в трубопроводе. Датчик точки отбора импульса по вакууму устанавливают на общем хлорном коллекторе перед входом газа в отделение. По измерительной системе получаемый импульс передается на регулятор разрежения 5, воздействующий [c.45]

    Контейнер для сжиженного хлора представлял собой сварной стальной сосуд объемом 830 л, состоящий из одной обечайки (диаметр 820 мм, длина 1285 мм, толщина стенки 10 мм) и двух сферических днищ. Основной причиной аварии было резкое увеличение давления внутри контейнера под воздействием прямых солнечных лучей. Разрыв произошел по продольному сварному шву цилиндрической части (рис. IX-1). В день аварии емкость в течение 5 ч находилась под воздействием солнечных лучей (температура в тени составляла 23 С  [c.171]


    Коррозионная агрессивность газов в сухом виде проявляется только при высоких температурах. Хлор воздействует [c.16]

    При воздействии галоидов на щелочной раствор первичных и вторичных нитропарафинов происходит ровное и быстрое замещение подвижного водорода нитросоединений на хлор или бром [22], аналогично тому, как этот атом водорода весьма легко реагировал с азотистой кислотой. [c.271]

    Известны аварии, вызванные неправильным применением уплотнительных прокладочных материалов. Так, на фланцевые соединения хлоропроводов поставили резиновые прокладки, которые под воздействием хлора потеряли эластичность, а это привело к нарушению герметичности и затем к аварии. Прокладки из [c.193]

    Как молекулы, так и атомы и ионы могут испытывать подобные воздействия не только при наложении т вещество внешнего электрического поля, но и при взаимодействии между собой. Так, при взаимодействии между двумя ионами всегда происходит и некоторая деформация их под действием электрических полей, возбуждаемых зарядами другого иона.. Поэтому молекулы воды, взаимодействуя с находящимся в растворе ионом, под действием создаваемого им сильного электрического поля не только ориентируются около него в соответствии-с направлением поля, но и претерпевают деформацию, так как один конец их притягивается ионом, а другой отталкивается от него. При этом полярность их возрастает и они становятся способными еще сильнее связываться с другими полярными молекулами и, в частности, с другими молекулами воды. Также, например, в молекуле хлороформа атомы хлора, обладающие одноименным (отрицательным) зарядом, вза- [c.76]

    Подогреватель пропилена, смесительное сопло и реактор могут быть выполнены из обычной стали, так как в местах контакта с хлором образуется защитная пленка из кларенового углерода. НС1-Абсорбер лучше всего изготавливать из кирпича, пропитанного силикатом натрия, или из стойкого к химическим воздействиям камня. [c.181]

    Комиссия, расследовавшая причины аварии, установила, что сжижение хлора на этом заводе в течение длительного времени велось в опасном режиме — при содержании водорода в газах более 2% (об.). Взрывоопасная смесь попала в хранилище из отделителя по линии жидкого хлора, соединяющей сепаратор с танком жидкого хлора, через разрушенную в танке сифонную трубу, являющуюся гидрозатвором, препятствующим проникновению газовой фазы из отделителя. Разрушение сифонной трубы было вызвано интенсивной коррозией под воздействием влажного хлора. [c.171]

    В качестве второго примера рассмотрим реакцию между -гептаном и хлором, протекающую под воздействием радиоактивного облучения в четыреххлористом углероде. Следующий ряд элементарных ступеней хорошо согласуется с экспериментальными измерениями суммарной скорости этой реакции  [c.37]

    Для предохранения деталей машин и механизмов от воздействий, связанных с внешней средой, к смазочным маслам добавляют специальные защитные и противокоррозионные присадки, которые обеспечивают не только высокие эксплуатационные свойства масел в обычных условиях, но и препятствуют нежелательному действию воды, соединений хлора, кислот, сероводорода и других коррозионно-активных веществ на металл в периоды консервации и перерывов в работе. Ниже приводится обзор работ по проблеме защиты металлов от коррозии, связанных в основном с разработкой и применением различных ПАВ в качестве противокоррозионных средств [15, с. 174]. Например, были разработаны защитные эмульсионные масла ЭЭМ-1 и ЭЭМ-2, представляющие собой композиции минерального масла, антиокислительной и противоизносной присадок, водомаслорастворимого сульфоната и нитрованного окисленного петролатума. Эти масла обладают высокими антифрикционными, противоизносными и противозадирными показателями и с успехом могут быть использованы для защиты гидравлических систем кораблей и горнодобывающего оборудования в качестве смазочно-охлаждающих жидкостей при механической обработке металлов, для консервации металлических изделий. [c.182]

    Мольное соотношение вода хлор при постоянной температуре процесса определяет содержание хлора на катализаторе. Поскольку процесс нанесения хлора на катализатор и удаления его под воздействием паров воды является равновесным процессом, содержание хлора на поверхности катализатора зависит от концентрации паров воды и хлористого водорода в газовой фазе, находящейся в контакте с катализатором. [c.26]

    Как показал Киппинг еще в 1904 г., при воздействии реактива Гриньяра на четыреххлористый кремний образуются хлоралкилсиланы, которые ректификацией могут быть разделены на индивидуальные соединения с различным содержанием хлора  [c.208]

    Особенно сильной коррозии в условиях воздействия сухого хлора подвергаются алюминий при температуре выше 160° С, железо Армко — выше 300° С, чугун — выше 240° С, медь — выше 300° С. [c.157]


    Особенно сильной корроаии в условиях воздействия сухого хлора подвергается алюминий при температуре выше 160°С, железо - выше 300 С, чугун - выше 240 С, медь - выше ЭОО с. [c.19]

    В 1833 Г. Ж. Дюма исследовал действие хлора на органические соединения. Он пришел к выводу, что при взаимодействии хлора с терпентинным маслом водород в составе этого вещества замещается равным объемом хлора. Воздействуя хлором на спирт, он получил хлораль (хлор + алкоголь), а затем и хлороформ при обработке хлораля щелочью. Оба вещества были обнаружены за два года перед этим Ю. Либихом, не обратившим на них внимания. Наконец, при хлорировании уксусной кислоты он выделил moho-, ди- и трихлоруксусные кислоты. Все эти процессы Ж- Дюма объединил общим названием металеп-сия (замещение, греч.) и сформулировал правила, которые и легли в основу теории замещения. Эта теория вызвала много споров, поскольку она противоречила господствовавшей тогда электрохимической теории Я. Берцелиуса. Действительно, положительно заряженный водород, как оказалось, мог замещаться [c.106]

    Химическая реакция между двумя веществами всегда представляет собой взаимное действие этих веществ друг на друга. Так, не только хлор действует на метан, но и метан на хлор, т. е. хлор не просто агрессивный газ, но он становится агрессивным под действием метана. Однако в органической химии предпочтительно считают, что хлор воздействует на метан. Исходя из этих позиций хлор называют реагентом, а метан — с(/бстрагол. Под субстратами обычно понимают вещества с большими молекулами, а под реагентами — вещества с малыми молекулами, т. е. реагент — это вещество с более простым составом, часто неорганического происхождения. Таким образом, в органических реакциях данный субстрат атакуется некоторым реагентом. [c.453]

    Если испарение производится в условиях невозможности передачи избытка испаренного хлора на конденсацию или на переработку (особенно на заводах, перерабатывающих привозной хлор), целесообразна схема, приведенная на рис. 48,6. Согласно этой схеме, регулятор давления пспаренного хлора воздействует на клапан подачи слсатого воздуха, при помощи которого жпдкий хлор передается из танка в испаритель. В зависимости от изменений давления, связанных с расходом испаренного хлора, регулятор давления воздуха воздействует на клапан, регулирующий количество хлора, подаваемого в испаритель. В сочетании с автоматическим регулированием температуры водяной бани испарителя данная схема позволяет полностью автоматизировать работу испарительной установки. [c.124]

    На вещество, вызывающие привкусы и запахи воды, хлор воздействует избирательно. Так, перхлорированием с дехлорированием устраняют лишь запахи и привкусы фенольных соединений хлорирование с аммонизацией дает не всегда необходи- [c.278]

    Гетерогенный катализ применяется главным образом при газофазном хлорировании. В качестве катализаторов используют активированный уголь, пемзу, отбеливающие земли и т. п., пропитанные металлическими солями, особенно медными. В соответствии с теорией Тэйлора их действие основано на способности их активных центров вызывать ионизацию хлора. Гетерогенное каталитическое хлорирование протекает по криптоионному механизму и нечувствительно к обрыву цепи, особенно если оп вызывается кислородом. Благодаря этой нечувствительности к кислороду становится возможной разработка такого процесса хлорирования, при котором хлор будет использоваться целиком именно потому, что процесс будет проходить в присутствии кислорода. При этом применяются такие контактные массы, которые делают возможным превращение образовавшегося хлористого водорода под воздействием кислорода в воду и хлор [,5]. [c.113]

    Наибольшую опасность представляют собой смеси ацетилена с воздухом и кислородом. Пределы взрываемости смеси ацетилена с воздухом составляют 2,2—100% (об.), а смеси ацетилена с кислородом 2,5—100% (об.). Максимальная скорость распространения пламени при горении ацетилено-воздушной смеси и содержании ацетилена 9,4% (об.) составляет 1,69 м/с, а при горении ацетилено-кислородной смеси и содержании 25% (об.) ацетилена 13,3 м/с. Смесь ацетилена с хлором и другими окислителями может взрываться под воздействием источника света. Поэтому в промышленных условиях принимают меры, позволяющие избежать возможности образования смесей ацетилена с газами-окислителями. [c.22]

    При воздействии хлора на Щ елочной раствор нитро парафина почти мгновенно получают хлорнитропарафин. [c.348]

    В результате воздействия элементарного хлора на пропилен и хлоргидрин в качестве побочнЛ продуктов образуются дихлор-пропан и дихлордиизопропиловый эфир  [c.71]

    Описан [16] двухколонный реактор для получения 93,5% пропиленхлоргидрина и 6% 1,2-дихлорпропана. Предложено также вводить хлор и пропилен в водную хлорноватистую кислоту в различных местах колонного реактора [15, 17]. Рекомендуется и последовательное включение нескольких реакторов в каскад, причем в первый реактор загружают воду и хлор, а в последующие вводят реакционную смесь из предыдущего реактора и пропилен. Такой режим работы дает хороший выход [18]. Описан метод одновременного воздействия хлора, воды и пропилена друг на друга [19—21]. [c.74]

    Инициаторами взрыва хлороводородной смеси, кроме открытого пламени, электрической искры, нагретых тел, может быть прямой солнечный свет в присутствии контактирующих веществ (древесного угля, железа и окислов железа и др.). При температуре выше 90 °С хлор образует с железом соединения РеС и РеС ,. Йлажный хлор вызывает сильную коррозию, так как образующиеся при взаимодействии хлора с водой соляная и хлорноватистая кислоты активно воздействуют на железо, [c.42]

    Установлено, что утечка жидкого хлора была вызвана ошибкой производственного персонала. Рабочий после залива железнодорожной цистерны стал разбирать съемный участок стального трубопровода при открытом вентиле на цистерне. Поэтому при ослаблении фланцевого соединения через него началась утечка жидкого хлора. Фланцевое соединение было ослаблершым, так как резиновая прокладка под воздействием хлора разрушилась. Следует отметить, что резиновые прокладки, которые ошибочно были установлены на фланцевых соединениях трубопровода жидкого хлора, могли сами по себе явиться причиной аварии, так как резина неустойчива в среде жидкого хлора. [c.192]

    Как показали >асчеты, трубопровод хлоргаза имел участки, где напряжения превышали допустимые. Разрушение трубопровода под воздействием температурных деформаций началось в наиболее уязвимом месте некачественно выполненной сварки в стыке А (рис. Х1П-5). Разрушение стыка было вторичным явлением под воздействием реактивной силы вытекающего хлора. Сварной шов в стыке А был выполнен без разделки кромок. При осмотре изломов в месте разрыва было установлено, что стыкуемые трубы удерживались в основном на наплавленном металле. Стыкуемые трубы были не проварены на 80% толщины стенки. Непроваренный участок послужил очагом для дальнейшего развития трещины. Толщина здорового наплавленного металла на отдельных участках швов составляла 0,5—1 мм. Следует отметить, что при —30 °С и угле изгиба 45° образцы практически полностью разрушаются по наплавленному металлу, т. е. с понижением температуры надежность работы сварных швов резко снижается. [c.300]

    Было установлено, что при работе в ресивере создалось разрежение, поэтому реакционная масса, содержащая порофор и соляную кислоту, из окислителей засосалась в ресивер, который был изготовлен из углеродистой стали. Под действием соляной кислоты углеродистая сталь активно растворялась с образованием хлорного железа и водорода. Содержавшиеся в суспензии порофор и гидроазосоединения всплыли на поверхность тяжелого раствора хлорного железа и подверглись воздействию газообразного хлора в условиях плохого отвода тепла. В этих условиях неизбежен был нагрев их до температуры разложения порофора (70—100 С) с выделением значительного количества тепла и газов. Создавшимся высоким давлением ресивер был разрушен. Анализ этой аварии показывает, насколько опасно попадание обрабатываемых органических продуктов в оборудование и трубопроводы хлорного тракта, в котором происходит длительное неконтролируемое взаимо- [c.356]

    Расплавленный парафин можно хлорировать хлором непосредственно или же в растворителе, при этом получаются хлорированные углеводороды, содержащие 28—70% хлора. В зависимости от содержания хлора конспстепция продуктов изменяется от вязких масел до легкоплавких твердых веществ. Плотность и вязкость их повышаются с увеличением содержания хлора. Мягкие парафины или микрокристаллические воски, содержащие разветвленные цепи, склонны давать нестабильные продукты хлорирования. Маслообразные продукты, содержащие 40% хлора, используются как растворители, пластификаторы, а также как присадки к смазочным маслам и краскам, устойчивым к коррозии. Парафины более высокой степени хлорирования — обычно твердые и более стабильные вещества. Они используются для противопожарных покрытий и для защиты от воздействия воды и атмосферных факторов. Хлорированные твердые парафины сравнительно нелетучи, не обладают запахом, безвкусны, не являются раздражителями, нетоксичны и при средней и высокой степени хлорирования (содержании хлора 40—70%) негорючи. [c.58]

    Хлорирование другими хлорирующими агентами. В качестве хлорирующего агента выгодно применять хлористый сульфурил, поскольку при диссоциации хлористого сульфурила поглощается тепло, в результате вся реакция хлорирования в целом становится менее экзотермической. Ход реакции контролируется количеством хлористого сульфурила. Диссоциация хлористого сульфурила может осуществляться под воздействием тепла, света, хлоридов металлов, активированного угля или перекисей. Разложение, катализируемое перекисями, удобный лабораторный метод хлорирования. Вместо хлористого сульфурила можно также использовать смесь двуокиси серы и хлора приблизительно в эквимолярпых количествах. [c.63]

    Циклизация, как отмечалось выше, идет на ранних стадиях хлорирования одновременно с начальным замещением. Теоретическим пределом циклизации, вычисленным статистически, является циклизация на 86,5 % всех изопреновых групп в природном каучуке. Металеитическое хлорирование катализируется кислородом и перекисью, а хлорирование с присоединением хлора — ультрафиолетовым светом. Циклизация отчасти тормозится с возрастанием роли реакции присоединения хлора. При комбинированном воздействии перекисей и ультрафиолетового освещения хлорирование можно довести до очень высокой степени [24]. [c.220]

    Экспериментальные данные и опыт эксплуатации полимерных материалов в условиях воздействия агрессивных сред позволяют делать выводы о связи мелсду структурой высокомолекулярных соединений и их химической стойкостью, В отличие от низкомолекулярных соединений, макромолекула содержит большое число реакционноспособных групп, в зависимости от характера которых или замены их другими группами свойства полимера могут в значительной степени изменяться в сторону их ухудшения или улучшения. Например, на поливиниловый снирт, содержащий гидроксильные группы, оказывают влияние вода, кислоты и щелочи. Стойкость поливинилацет ата, полиакриловой кислоты и других высокомолекулярных соединений, которые можно представить как производные полиэтилена при частичном или полном замещении водорода гидроксильными, ацетатными или другими функциональными группами, также понижена. Соединения, у которых водород в полиэтиленовой н,епи замещен фтором или фтором и хлором, стойки во всех агрессивных средах. [c.357]

    И.меется производственный опыт применения стеклопластиков иа химических заводах для изготовления конструкций, предназначенных для перекачивания агрессивных лащкостен для барботажиых труб, подверженных воздействию соляной кислоты, хлор , хлоропроизводных бензола и др. [c.403]

    Условия труда значительно улучшаются при уменьшении числа стадий технологического процесса и при переходе к. одностадийным процессам. Синтетический этиловый спирт раньше получали по многостадийному методу сернокислотной гидратации с использованием серной кислоты, опасной для обслуживающего персонала н обладающей агрессивными свойствами. В настоящее время этот процесс заменен одностадийным способом прямой гидратации, без использования серной кислоты. В применяемом ранее многостадийном технодоги-ческом процессе получения окиси этилена использовали токсичный хлор, агрессивные щелочи и кислоты. В применяемом в настоящее время одностадийном процессе прямого окисления этилена кислородом воздуха устранено воздействие указанных неблагоприятных веществ. Научно-исследовательские институты химической про-. [c.142]


Смотреть страницы где упоминается термин Хлор, воздействие: [c.244]    [c.244]    [c.839]    [c.205]    [c.32]    [c.118]    [c.255]    [c.368]    [c.265]    [c.212]    [c.72]    [c.130]    [c.148]   
Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте