Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гальванический обратимый

    Стандартные потенциалы дают представления о возможном направлении окислительно-восстановительных химических реакций, однако в реальных условиях это направление может быть иным по следующим причинам. Окислительно-восстановительные системы, в зависимости от скорости реакций, протекающих на электродах, подразделяются на обратимые и необратимые. Стандартные потенциалы обратимых систем измерены непосредственно описанным выше способом, тогда как стандартные потенциалы необратимых систем в большинстве случаев находят путем термодинамических расчетов. Вследствие этого на практике их величины оказываются иными, так как на них оказывают большое влияние многие факторы. Например, для необратимых систем не наблюдается закономерного изменения потенциала в соответствии с изменением концентрации компонентов системы, и расчеты, проведенные с использованием стандартных окислительных потенциалов и концентраций компонентов, носят скорее иллюстративный характер, чем отвечают действительным данным. Поэтому гораздо большее практическое значение имеют формальные (реальные) потенциалы окислительно-восстановительных систем. Формальные потенциалы ( ф) находят, измерением э. д. с. гальванического элемента, в котором начальные концентрации компонентов окисли- [c.350]


    Если через электрохимическую систему проходит измеримый электрический ток Л оиа перестает быть термодинамически обратимой и в завнсимости от направления тока превращается либо в гальванический элемент (э), либо в электролитическую ванну (в). Полезная работа, произведенная системой в необратимых условиях, всегда меньше, чем в состоянии равновесия. Электрическая энергия, генерируемая гальваническим элементом за счет протекания в ней электрохимической реакции, будет поэтому при отборе тока I меньше, чем в состоянии равновесия (т. е. нри / = 0)  [c.22]

    Напряжение / для неравновесных электрохимических систем отличается от обратимой э.д.с. В. Напряжение гальванических элементов нри этом меньше, а напряжение на электрохимиче- [c.277]

    Е — электродвижущая сила обратимого гальванического элемента в стандартных условиях ) [c.102]

    Согласно уравнению (ХП1,4) при замене Л ах на—АО при работе гальванического элемента в условиях обратимости получим [c.288]

    Гальванический элемент состоит из двух электродов, опущенных в раствор и обратимых как к катиону, так и к аниону. Для определения коэффициента активности соляной кислоты применяется элемент, составленный из водородного и хлорсеребряного электродов  [c.309]

    Когда химическая система выполняет работу над своим окружением в ходе обратимого процесса, уменьшение свободной энергии системы в точности совпадает с той частью работы, которая не является работой типа PV. Например, работа, вьшолняемая гальваническим элементом, является мерой уменьшения свободной энергии этого элемента. И наоборот, если к электродам электролитического элемента, подобного описанному в разд. 1-7, приложено напряжение, то электрическая работа, выполняемая над электролитическим элементом (и измеряемая методами, которые будут рассматриваться в гл. 19), равна приросту свободной энергии химических вешеств внутри него. Когда при пропускании электрического тока через воду происходит ее электролитическая диссоциация, использованная для этого электрическая работа расходуется на увеличение свободной энергии газообразных водорода и кислорода по сравнению со свободной энергией жидкой воды  [c.71]

    Если элементы обратимого гальванического элемента с потенциалами в разомкнутом состоянии (Уа)обр и (Ук)сбр и сопротивлением электролита между ними в цепи R замкнуть и измерить установившееся значение силы генерируемого тока /, то оказывается, что эта сила тока значительно меньше рассчитанной по закону Ома, т. е. [c.192]


    Вторичный элемент - гальванический элемент с обратимой реакцией ячейки. [c.93]

    Гальваническим элементом называется любое устройство, дающее возможность получать электрический ток за счет проведения той или иной химической реакции. Разность потенциалов между электродами элемента несколько зависит от условий, в которых она определяется. Работа, получаемая при изотермическом проведении какой-нибудь данной химической реакции, является наибольшей в том случае, когда реакция проводится в условиях, наиболее близких к обратимым. Так и электрическая работа, получаемая с помощью гальванического элемента, будет наибольшей, когда элемент работает в условиях, наиболее близких к обратимым. [c.418]

    Э. д. с. всякого работающего или способного к работе элемента является величиной существенно положительной. Однако в теории гальванических элементов возникает необходимость рассматривать реакции, лежащие в основе работы элемента, как реакции обратимые, т. е. способные совершаться в прямом и в обратном направлениях. В связи с этим вводится условие о знаках э. д. с. гальванических цепей. [c.419]

    Обратимые и необратимые цепи. Общие термодинамические условия обратимости применительно к работе гальванических элементов могут быть сформулированы следующим образом. Гальванический элемент работает обратимо при соблюдении двух условий 1) если его э. д. с. лишь на бесконечно малую величину превышает приложенную к нему извне и противоположно направленную э. д. с. (обратимость условий работы) и 2) если реакция в элементе может быть полностью обращена в противоположном направлении при приложении к нему извне противоположно направленной э. д. с., которая лишь на бесконечно малую величину превышает э. д. с. данного элемента (обратимость самой цепи, т. е. химических реакций, происходящих на электродах). [c.421]

    Как указано выше, гальванический элемент работает обратимо лишь в том случае, когда э. д. с. только на бесконечно малую величину превышает противоположно направленную э. д. с., приложенную к нему извне. Следовательно, только в таких условиях производимая им работа будет равна максимальной работе реакции и разность потенциалов на электродах будет наибольшей. Чем больше реальные условия работы отличаются от указанных, тем меньшей будет э. д. с. элемента и тем больше будет различаться фактически получаемая от него работа от максимальной работы реакции. [c.424]

    Потенциал разложения и перенапряжение. В принципе процессы электролиза обратны процессам работы соответствующих гальванических элементов, и при обратимом проведении термодинамическая характеристика их должна совпадать. Однако при практическом проведении электролиза процесс сопровождается большей частью теми или иными побочными явлениями, делающими его не вполне обратимым. [c.449]

    Легко видеть, что потенциал разложения не может быть меньше, чем э. д. с. гальванического элемента, отвечающего обратной реакции . При отсутствии каких-нибудь побочных процессов он действительно равняется э. д. с. соответствующего элемента, и в этих случаях процесс проводится обратимо. Однако чаще он оказывается большим. [c.450]

    Из обратимых электродов могут быть составлены обратимые электрохимические цепи (пары, гальванические элементы). Если электродам соответствуют реакции [c.467]

    Из обратимых электродов (полуэлементов) могут быть составлены обратимые электрохимические системы, называемые электрохимическими цепями (парами, гальваническими элементами). Различают два основных вида электрохимических цепей — химические и концентрационные. [c.487]

    Рассчитайте ЭДС и напишите схему гальванического элемента, в котором обратимо протекает реакция по уравнению [c.319]

    Для реакции, протекающей обратимо в гальваническом элементе, дано уравнение зависимости ЭДС от температуры. При заданной температуре Т вычислите ЭДС Е, изменение энергии Гиббса АО, изменение энтальпии АН, изменение энтропии А5, изменение энергии Гельмгольца АА и теплоту Q, выделяющуюся иЛи поглощающуюся в этом процессе. Расчет производите для 1 моль реагирующего вещества.  [c.336]

    Прохождение электрического тока через электрохимическую систему связано ке только с соответствующими химическими превращениями, но и с изменением ее электрических характеристик, прежде всего э.д.с. и электродных потенциалов, ио сравиенпю с их исходными значениями в отсутствие тока. При этом если электрохимическая система является электролизером (электролитической ванной), то напряжение на ней при данной силе тока будет больше обратимой э.д.с. той же системы E (j)>E, и наоборот, если электрохимическая система генерирует ток, т. е. является химическим источником тока — гальваническим элементом или аккумулятором, то его внешнее напряжение будет меньше, чем э.д.с. Еа 1)<Е. [c.287]

    Первое предположение о причинах данного явления сводится к тому, что различие между обратимой э.д.с. и напряжением возникает как результат омических потерь напряжения. В этом случае напряжение, необходимое для проведения какой-либо реакции в электролитической ванне, будет слагаться из обратимой э.д.с. Е (определяемой изменением изобарно-изотермического потенциала) и падения напряжения в электролите и в электродах Еом (зависящего от плотности тока). Такое предположение объясняет причину увеличения напряжения на аание при прохождении через нее тока по сравнению с обратимой э.д.с. той же системы. Точно так же уменьшение напряжения гальванического элемента при отборе от него тока можно отнести за счет того, что часть э.д.с. расходуется на преодоление сопротивления в утри самого элемента. Омические потери напряжения являются, таким образом, одной из причин различия между обратимой э.д.с. и рабочим напряжением. Опыт показывает, однако, чго [c.287]


    По теории местных элементов скорость коррозии (или пропорциональный ей электрический ток, возникающий в результате работы локальных гальванических пар) зависит не только от электрохимических свойств электродов З тих пар, но и от омического сопротивления среды, в которой совершается процесс коррозии и которая отделяет анод от катода. Определяюигне скорость коррозии соотиошения удобнее выразить гра( )ически при помощи так называемых коррозионных диаграмм. На коррозионной диаграмме (рис. 24.4) потенциалы анода и катода (или потенциалы анодного и катодного процессов) представлены как функция снлы тока. Когда нет коррозионного процесса и сила тока равна нулю, начальные значения потенциалов на аноде и катоде должны отвечать обратимым потенциалам анодной и катодной ё р реакций в заданных [c.496]

    Любая гальваническая цйяь в целом никогда не находится 1) равновесии. В необратимом элементе обычно возможно протекание химической реакции и при разомкнутой внешней цепи (реакция 2п + Н2504 в элементе Вольта). Но и обратимая (в указанном выше смысле) цепь в целом далека от термодинамического равновесия. Если такую цепь замкнуть на конечное сопротивление и предоставить самой себе, то во внешней цепи возникает электрический ток измеримой силы, т. е. цепь совершает работу, необратимо приближаясь к равновесию. Разомкнутая цепь только временно сохраняется почти неизменной. Например, в разомкнутом элементе Даниэля — Якоби происходит диффузия ионов Си2+ через раствор к цинковому электроду при соприкосновении цинкового электрода с ионами меди происходит необратимая (без совершения работы) реакция вытеснения ионов Сц2+ из раствора металлическим цинком, т. е. та же реакция, которая служит источником тока при работе с лемента. [c.519]

    Максимальное напря . е гальванического элемента, отвечающее обратимому протеканию происходящей в нем реакции, называется электродвижущей силой Е (5. д. с.) элемента. Если реакция осуществляется в стандартных условиях, т. е если все вещества, участвующие в реакции, находятся в своих стандартных состояниях, то наблюдаемая при этом э. д. с. называется стандартной электродвижущей силой данного элемента. [c.178]

    Электрический ток, протекающий по внешней цепи гальванического элемента, может производить полезную работу. Но работа, которую можно выполнить за счет энергии химической реакции, зависит от ее скорости она максимальна при бесконечно медленном— обратимом — проведении реакции (см. 67). Следовательно, работа, которую можно произвести за счет реакции, протекающей в гальваническом элементе, зависит от величины отбираемого от него тока. Если, увеличивая сопротивление внешие( цепи, уменьшать ток до бесконечно малого значения, то и скорость реакции в элементе тоже будет бесконечно малой, а работа—максимальной. Теплота, выделяемая во внутренней цепи элемента, будет при этом, наоборот, минимальна. [c.275]

    Но поскольку эта работа зависит от силы тока, то и напряжение между полюсами элемента тоже зависит от силы тока (Р — величина постоянная). В предельном случае, отвечающем обратимому протеканию реакции, напряжение будет максимальным. Максимальное З11ачение напряжения гальванического элемента, соответствующее обратимому протеканию реакции, называется электродвижущей силой (э.д.с.) данного элемента. [c.276]

    При обратимом протекании химической реакции в гальваническом элементе в условиях постоянства температуры и давления получаемая электрическая энергия будет наибольшей и совершаемая системой электрическая работа будет максимальной иолезной работой реакции, равной убыли изобарно-изотермического потенциала, [c.288]

    Гальванические элементы. Различают концентрационные и химические гальванические элементы. Концентрационные элементы могут быть с переносом н без иереиоса вещества. КоЕщентрационный элемент с переносом вещества получают, приводя в соприкосновение дна раствора одного и того же электролита с разными концентрациями и помещая в эти растворы одинаковые электроды, обратимые ио отно- [c.289]

    Измерение э. д. с. гальванических элементов. При работе гальванического элемента его э. д. с. не сохраняет строго определенного значения вследствие изменений, пронсходящнх у электродов и в объеме раствора. Поэтому точное измерение э. д. с, производится методом компенса-нии, позволяющим определять э. д. с. элемента измерением разности потенциалов в условиях обратимой работы элемента. [c.298]

    Для обратимого гальванического элемента э. д. с. является мерой изменения изобарного нотенцнала реакции, протекающей при работе этого элемента. Работа, совершаемая элементом при постоянных давлении и температуре, может быть рассчитана по уравнению [c.301]

    Существуют разные тиШ)1 обратимых окислительно-восстановитель-ных систем, состоящих из ионов одного и того же металла разных степеней окисления, из двух анионов, несущих разные заряды и систем, состоящих из органических соединений. Примером системы, состояи ей из органических соединений, люжет служить система хинон — гидрохинои. Она представляет собой кристаллическую эквимолекулярную смесь хииона и гидрохинона, называемую хингидроном. Гальванический элемент, основанный на восстановлении хинона в гидрохинон, является обратимым окислительно-восстановительным элементом, по измерению э. д. с. которого при разных температурах можно определить термодинамические функции этой реакции. [c.316]

    При замыкании в электролите двух обратимых электродов с разными потенциалами [(Уа)обр и (Ук)обр1 происходит перетекание электронов от более отрицательного электрода (анода) к менее отрицательному (или более положительному) электроду (катоду). Это перетекание электронов выравнивает значения потенциалов замкнутых электродов. Если бы при этом электродные процессы (анодный на аноде и катодный на катоде) не протекали, потенциалы электродов сравнялись бы и наступила бы полная поляризация. В действительности анодный и катодный электродные процессы продолжаются, препятствуя наступлению полной поляризации вследствие перетекания электронов с анода к катоду, т. е. действуют деполяризующие. Отсюда, в частности, происходит и название ионов и молекул раствора, обеспечивающих протекание катодного процесса — деполяризаторы. Однако из-за отставания электродных процессов от перетока электронов в гальваническом элементе (см. с. 192) потенциалы электродов изменяются (сближаются) и короткозамкнутая система, в конечном итоге, полностью заполяризовывается (см. с. 271, 282 и 287). [c.191]

    В этих условиях разность потенциалов между электродами элемента максимальна. Наибольшая разность потенциалов данного элемента (т. е. разность потенциалов при обратимых условиях его работы) называется его электродвижуш,ей. силой и обозначается э. д. с. Гальванической цепью мы будем называть последовательную совокупность всех скачков потенциала на различных поверхностях раздела, отвечающих данному гальваническому элементу. [c.419]

    Измерение электродвижущих сил. Нормальный элемент. При работе гальванического элемента его э. д. с. не сохраняет строго постоянного значения вследствие изменения концентрации растворов и других причин. Поэтому точные измерения 3. д. с. должны производиться при минимальном прохождении тока. Этому отвечает компенсационный метод измерения э. д. с. (метод Поггендор-фа), дающий возможность определить э. д. с. элемента путем измерения разности потенциалов в условиях обратимой работы элемента. Принципиальная схема установки для компенсационного измерения э. д. с. показана на рис. 152. [c.435]

    Для рг счета А5р.о необходимо реакцию провести обратимо. Если же осущесгвить эту реакцию в помещенном в термостат гальваническом элементе, в котором поддерживается температура и давление, и если [c.76]

    Для р< акции, протекающей обратимо в гальваническом элементе, дано урапнение зависимости э. д. с. от температуры. При заданной температуре Т вычислите э, д. с. Е, изменение энергии Гиббса АС, изменение Э1тальпии АН, изменение энтропии А5, изменение энергии Гельмгольца ДЛ и теплоту Q, выделяющуюся или поглощающуюся в этом процессе. Расчет дроизводите для 1 моль реагирующего вещества. [c.317]

    Для расчета А5р.с необходимо реакцию провести обратимо. Если же осуществить эту реакцию в помещенном в термостат гальваническом элементе, в котором поддерживаются неизменными температура и давление, и если ЭДС элемента Е компенсируется ЭДС, приложенной извне, то процесс будет практически обратимым. При этом будет произведена работа Wjaax = tiFE, а тепловой эффект Q будет равен TAS Л i/= Q - Й7 ах = (3 - (Я А V + U7 3 [c.80]


Смотреть страницы где упоминается термин Гальванический обратимый: [c.22]    [c.198]    [c.273]    [c.321]    [c.181]    [c.285]    [c.191]    [c.331]    [c.23]    [c.115]   
Основы физической и коллоидной химии Издание 3 (1964) -- [ c.210 ]




ПОИСК





Смотрите так же термины и статьи:

гальванические



© 2025 chem21.info Реклама на сайте