Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Шпат плавиковый определение кремния

    Сущность метода. Определение фтора в апатитах (а также в плавиковом шпате) основано на том, что фториды разлагаются при обработке концентрированной серной кислотой с выделением летучей фтористоводородной кислоты. Последняя, реагируя с кварцем, образует летучий фторид кремния, который при взаимодействии с водой распадается с образованием кремнефтористоводородной и кремневой кислот  [c.235]


    ФОТОКОЛОРИМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ДВУОКИСИ КРЕМНИЯ В ПЛАВИКОВОМ ШПАТЕ И ФЛЮОРИТОВОМ КОНЦЕНТРАТЕ [c.122]

    Для определения содержания двуокиси кремния в плавиковом шпате и флюоритовом концентрате применяют методику ГОСТ 7619—55 на шпат плавиковый или методику ЦМТУ 3342—53 на флюоритовый концентрат. Ни одна из этих методик не дает должной сходимости результатов параллельных определений и достоверного показания содержания двуокиси кремния в указанных продуктах. [c.122]

    Проверку методик проводили на искусственной смеси, адекватной по составу технологическому плавиковому шпату содержание двуокиси кремния составляло 3%. Смесь анализировали по методике ГОСТа с фотоколориметрическим определением двуокиси кремния в фильтратах I и II последнее по методике ГОСТа не проводится. [c.122]

    Связывание F в сильнокислой среде в прочные комплексы с бором часто применяется в аналитической химии, в особенности для колориметрического определения кремния в присутствии фтора [163], а также для растворения труднорастворимых фторидов. Описано [164 ] использование аналогичных реакций и для промышленного получения HBF действием смеси борной и серной кислоты на плавиковый шпат. Отделенный от осадка сульфата кальция раствор переводится в криолит (действием гидроокиси алюминия и соды) или во фтористый алюминий (действием гидроокиси алюминия) регенерированная борная кислота возвращается в цикл производства. [c.455]

    Основные научные работы относятся к аналитической и неорганической химии. Разработал практически важные методы определения калия, цинка, фтора в плавиковом шпате, апатитах, фосфоритах и др. Предложил (1967—1969) метод изучения гетерогенных систем с малорастворимыми компонентами (метод остаточных концентраций Тананаева). Исследовал фтористые соединения актинидов, редких и других элементов, что позволило ему выявить ряд закономерностей в изменении свойств комплексных фторметаллатов. Разработал методы получения сверхчистых кремния, германия и других полупроводниковых элементов. Установил закономерности образовашш смещанных ферроцианидов в зависимости от природы входящих в их состав тяжелого и щелочного металлов и разработал ферроцианид-ный метод извлечения рубидия и цезия из растворов калийных солей, создал ряд неорганических ионообменников, красителей и др. Провел физико-химические иссле- [c.484]


    Мы применили для определения двуокиси кремния в плавиковом шпате и флюоритовом концентрате фотоколориметрический метод анализа, основанный на образовании комплекса состава [c.123]

    Для подтверждения правильности переведения двуокиси кремния в колориметрически определяемую форму по рекомендуемой нами методике мы провели также фотоколориметрическое определение содержания двуокиси кремния с применением следующего способа переведения навески в раствор. С целью отделения фтора от двуокиси кремния навеску плавикового шпата обрабатывали раствором хлорида алюминия в присутствии борной кислоты, нерастворимый остаток отфильтровывали и сплавляли с карбонатом калия-натрия и борной кислотой. Фотоколориметрическое определение двуокиси кремния проводили в фильтрате, в растворе, полученном после выщелачивания плава, а также в объединенном растворе (фильтрат и основной раствор). Результаты определений двуокиси кремния, представленные в табл. 4, хорошо согласуются с данными анализа, проведенного по рекомендуемому методу ( , = 0,8 0,05(3) == 3,18). [c.125]

    Рекомендуемым методом ыл проведен анализ 10 промышленных образцов флюоритового концентрата и плавикового шпата. Результаты представлены в табл. 5. Видно, что средняя квадратичная ошибка определения двуокиси кремния не превышает 0,19%. [c.125]

    Экстракция желтой фосфорномолибденовой кислоты с последующим ее восстановлением применена для определения фосфора в олове высокой чистоты [107], окиси свинца [108], алюминии, медных сплавах, белых металлах и сталях [109], сплавах алюминия и кремния [110], плавиковом шпате [111], воздухе [112] и других материалах [113—115]. [c.108]

    Для определения щелочных металлов в полевых шпатах было рекомендовано сначала проводить разложение одной лишь плавиковой кислотой, затем выпаривать досуха, растворять остаток в воде и осаждать окисью кальция алюминий, железо, магний, фтор и оставшийся кремний. После фильтрования и промывания осадка горячей водой большую часть кальция удаляют из фильтрата осаждением карбонатом аммония и фильтрованием. Для удаления оставшейся части кальция проводят осаждение оксалатом аммония и фильтруют. Фильтрат снова подкисляют соляной кислотой, выпаривают досуха и сухой остаток осторожно прокаливают для удаления аммонийных солей, как обычно. В этом методе, как и в ме- [c.928]

    Было проведено подробное исследование всех известных способов определения фтора на одном и том же образце плавикового шпата. Оказалось, что метод Берцелиуса из-за больших и не всегда одинаковых потерь (причину которых не удалось удовлетворительно объяснить) во многом уступает методам, основанным на отгонке фторида кремния. Методом Берцелиуса не удалось извлечь более 87—89% присутствовавшего в про- [c.936]

    Содержание кремния в некоторых полупроводниковых материалах очень мало, поэтому при анализе сурьмы, галлия, индия и таллия [148] предварительно отделяют основные компоненты, а затем определяют кремний в виде синего кремнемолибденового комплекса после экстракции его изоамиловым спиртом. При этом сурьму отгоняют в виде трехбромистой, отделяют галлий в виде оксихино-лината, индий в виде трихлорида, а таллий в виде окиси. При определении кремния в силуминах в качестве восстановителя применяют эйконоген —ЭХТ-кислоту [149]. Рекомендовано при определений кремния в чистой меди [150] применять раствор молибдата аммония с определенным значением pH. Разработаны методы определения кремния в продуктах цинкового производства [151] и экстракционно-фотометрический метод определения кремния в ниобии, тантале [152] и металлическом никеле [153]. Экстракцию проводят н-бутанолом, хотя удобнее применять изоамиловый спирт. Экстракция применена также при определении кремния в чистой воде [154], в морской воде [155], в железе и стали [156], в хроме высокой чистоты [157], в плавиковом шпате [158] и других объектах. [c.128]

    Для определения кремния значительно чащ применяют синий кремнемолибденовый комплекс. В виде этого комплекса определяют кремний в чистом теллуре [174], в воде бойлеров и накипи [175], в пробах с высоким содержанием кремния [176], огнеупорных материалах [177], глиноземе [178,] воде [179, 180], растворах нитрата уранила [181], ферросиликохроме [182], плавиковом шпате и флюо-ритовом концентрате [183], стекле [184], неметаллических включениях [185], окиси бора [186], техническом перборате [187], железных рудах и других продуктах металлургического производства [188], химических реактивах [189], двуокиси урана [190], сталях, алюминии, цирконии, титановой губке, сплавах кремния и никеля, урана и кремния, бифториде калия [191], хроматах кальция и магния [192], минеральном сырье [193] и в других объектах [194—197]. [c.128]


    Определение фтора во фториде алюминия, криолите и плавиковом шпате. Исходный нерастворимый в воде фторид переводят в растворимый фторид щелочного металла сплавлением пробы со смесью карбоната калия и двуокиси кремния. При выщелачивании плава водой фторид калия переходит в раствор, а гидроокись и оксикарбонат алюминия и карбонат кальция остаются в нерастворимом остатке. Раствор отфильтровывают и пропускают через катионообменную колонку. Вытекающая из колонки жидкость содержит фтористоводородную кислоту, которую оттитровывают 0,1 н. раствором NaOH в присутствии бромкрезолового фиолетового. [c.266]

    Как показали Дуррер, Хельбрюгге и Маринчек десульфуризация кислого шлака при высоких температурах такая же, как и шлаков, обладающих небольшой вязкостью, например с добавками плавикового шпата и двуокиси титана. Кремнезем вступает в реакцию с сульфидом железа в присутствии углерода с образованием моносульфида кремния, металлического железа и окиси углерода. Элементарный кремний в металлическом железе не может быть средством десульфуризации. Летучий моносульфид кремния (см. С. I, 66) конденсирует--ся в холодных частях доменной печи и возвращается обратно с шихтой в горн. Таким образом, сера, реагируя в определенной последовательности, циркулирует в доменной печи вследствие летучести моносульфида кремния. Эта циркуляция, однако, быстро прерывается процессами, идущими в электропечи, в которой возможна лрямая десульфуризация кремнеземом. [c.939]

    Предложен фотоколориметрическпй метод определения двуокиси кремния в плавиковом шпате и флюоритовом концентрате, основанный на образовании комплекса состава Н8[31(Мо207)б] а НзО, окрашенного в желтый цвет, и восстановлении его в молибденовую синь. Навеску предлагается сплавлять с карбонатом калия-натрия в присутствии борной кислоты. Средняя квадратичная ошибка определения для содержаний двуокиси кремния 1—4% не превышает [c.122]

    При анализе производственных проб плавикового шпата по методике ГОСТа результаты параллельных определений также плохо согласуются между собой содержание двуокиси кремния в фильтрате II достаточно большое по сравнению с обш,им содернчанием. [c.123]

    Фтор. В первом издании этой книги было указано, что способ, который дал бы возможность легко удостовериться, имеется ли фтор в заметном количестве в породе или в минерале, был бы весьма желателен, но что ни один способ из выдвинутых до сих пор не может считаться удовлетворительным. С тех пор автор изучил метод испытания, опубликованный Файглем [1]. Это испытание столь чувствительно, что приходится применять строжайшие меры, чтобы избежать загрязненных реактивов или стеклянной посуды. Файгль подчеркивает, что породы, содержащие карбонаты или сульфиды, нуждаются в предварительном обжиге до испытания, и помимо этого, повидимому, считает, что испытание применимо ко всем силикатным горным породам. К сожалению, это не так. Испытание построено на получении четырехфтористого кремния при нагревании с крепкой серной кислотой. Поэтому фтор обнаружен будет только в том случае, если присутствует фторсодержащий минерал, который разлагается серной кислотой. Так, фтор будет легко найден в плавиковом шпате или фторапатите, присутствующих в силикатной породе, но останется необнаруженным в пироксенах, амфиболах или турмалине, а топаз только отчасти разлагается серной кислотой. Проба хорошо получается с биотитом, флогопитом и лепидолитом или с содержащими их горными породами. Так, была получена хорошая реакция с 0,01 г гранита, 9% которого состояло из биотита с 0,22% фтора. Из других присутствующих минералов на гиперстен кислота не действует, а кварц и полевой шпат не содержат заметного количества фтора, поэтому в данном случае проба, вероятно, обнаруживает присутствие немногим больше 0,02% фтора. С другой стороны, проба не получилась в случае мусковитового порошка с 0,11% фтора. Таким образом, проба может обнаружить минимальное количество фтора в небольшом количестве апатита, содержащемся в породе, и не показать гораздо большее содержание, присутствующее в амфиболе или в слюде, не разлагающихся серной кислотой. Поэтому автор советует прибегать к этому способу только в том случае, если нет силикатов, содержащих обычно немного фтора. Если же они присутствуют, фтор обязательно должен быть определен весовым способом или методом Штейгера. Если минералогический состав породы неизвестен, нельзя доверять испытанию, за исключением случаев, когда получена положительная реакция. Метод очень полезен для выяснения, содержит ли биотит только немного фтора, который может быть оценен по методу Штейгера, или количество более значительное, требующее применения весового способа. При испыта- [c.219]

    Осн. работы относятся к аналит. и неорг. химии. Разработал практически важные методы определения калия, цинка, фтора в плавиковом шпате, апатитах, фосфоритах и др. Предложил (1967—1969) метод изучения гетерогенных систем с малорастворимыми компонентами (метод остаточных концентраций Тананаева). Исследовал фтористые соед. актиноидов, редких и др. элем. Разработал методы получения сверхчистых кремния, германия и др. полупроводниковых элем. Установил закономерности образования смешанных фероцианидов и разработал ферроцианидный метод извлечения рубидия и цезия из р-ров калийных солей. Провел физико-хим. исследования фосфатов многовалентных металлов в широком интервале т-р. [c.424]


Смотреть страницы где упоминается термин Шпат плавиковый определение кремния: [c.73]    [c.137]    [c.235]   
Фотометрический анализ методы определения неметаллов (1974) -- [ c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний определение

Плавиковый шпат

Шпат плавиковый, определени



© 2025 chem21.info Реклама на сайте