Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Берцелиуса метод

    В дальнейшем методы химического анализа непрерывно развивались и усовершенствовались, появлялись новые методы, позволяющ,ие не только устанавливать состав сложных веществ, но и открывать новые элементы и определять их атомные веса. Большая работа в создании новых методов анализа была проведена выдающимся шведским химиком И. Я. Берцелиусом (1779—1848), профессором Казанского университета К. К- Клаусом (1797—1864), немецкими учеными Р. В. Бунзеном (1811 — 1899) и Г. Р. Кирхгофом (1824—1887), русским ученым Ч. С. Цветом (1872—1919), советским ученым Н. С. Кур-наковым (1860—1941) и многими другими учеными. [c.18]


    Уксусная кислота — первая нз органических кислот, которая стала известна человеку. Впервые она была получена И.Глаубером в 1648 г. и в концентрированном виде путем вымораживания ее водных растворов и разложением ацетата кальция серной кислотой Г.Шталем в 1666—1667 гг. Элементный состав уксусной кислоты был установлен Я.Берцелиусом в 1814 г. До начала XIX века уксусную кислоту производили исключительно из природного сырья пирогенетической обработкой древесины и окислительным уксуснокислым брожением пищевого этанола. В настоящее время производство уксусной кислоты из лесохимического сырья имеет второстепенное значение, хотя масштабы его измеряются сотнями тысяч тонн. В этом методе уксусную кислоту выделяют из сконденсированной части парообразных продуктов термической обработки древесины (жижки), получаемой [c.310]

    Разложение плавиковой и серной кислотами. Один из наиболее давно известных методов (метод Берцелиуса) заключается в следующем. Силикат разлагают плавиковой и серной кислотами и выпаривают. При этом кремний удаляется в виде 31р/, остаток сульфатов переводят в раствор. Гидроокиси алюминия, железа и титана, а также углекислый кальций осаждают смесью растворов гидроокиси аммония и углекислого аммония. [c.470]

    Определение по Берцелиусу. Метод определения суммы щелочных металлов в виде хлоридов был описан в 1824 г [764] и предназначен для анализа силикатов. [c.27]

    Все более точное определение атомных масс в XIX в. одновременно было связано со все более совершенствующимися методами количественного анализа и созданием новых приборов. Среди других к ним относятся такие использованные Берцелиусом методы, как растворение силикатов в плавиковой кислоте, а также разделение металлов с использованием хлора. При проведении количественного анализа Берцелиус научился обходиться лишь десятой частью того количества веществ, которое требовалось его предшественникам. Применив спиртовую горелку, ученый облегчил проблему прокаливания осадков. [c.122]

    Уже говорилось, что Дж. Дальтон принял значение атомной массы природного водорода за единицу и обосновал водородную шкалу атомных масс. Однако даже грубые химические методы определения атомных масс показали, что при этом допущении атомные массы почти всех элементов оказались нецелочисленными. Например, атомной массе кислорода приходилось приписывать значение 15,9. Поэтому бельгийский химик Ж. Стас, а за ним и Я. Берцелиус предложили в качестве единицы атомной массы принять 1/16 атомной массы кислорода. Тогда атомные массы большинства природных элементов оказались близкими к целочисленным. После открытия изотопов шкала была уточнена и за единицу стала приниматься 1/16 массы изотопа (нуклида) 0. Эта шкала атомных масс просуществовала вплоть до 1961 г., когда за единицу атомных масс нуклидов и их природных смесей была принята 1/12 атомной массы нуклида углерода С. Эта шкала действует и в настоящее время. [c.106]


    По поводу работ Берцелиуса, связанных с разделением платиновых металлов, К. Клаус — известный специалист в области химии платиновых металлов — писал Всем тем, что до сих nqp известно по этому вопросу, мы обязаны заслугам бессмертного Берцелиуса, методы которого былп настолько же остроумно придуманы, насколько необыкновенно искусно были выполнены  [c.93]

    В это же время И. Я. Берцелиусом (1779—1848) и Ю. Либихом (1803—1873) были усовершенствованы и развиты методы [c.9]

    Заслуга Бутлерова состоит и в том, что он очень продуманно определил понятие химического строения. Исследователи до него, в том числе Берцелиус и Жерар, понимали иод строением или конституцией истинную геометрию молекулы, т. е. пространственное расположение в ней атомов. Решение этой задачи для химиков XIX века было непосильным делом, порождало бесплодные спекуляции. Бутлеров прекрасно понимал трудности, стоящие на пути установления физического строения молекулы (с межатомными расстояниями, валентными углами) и, опираясь на факт существования изомеров, выдвинул более определенную и реальную задачу обнаруживать химическими методами порядок взаимодействия атомов. Такой порядок должен был существовать и быть устойчивым, в противном случае мы не наблюдали бы явления изомерии. Этот устойчивый порядок взаимодействия атомов в молекуле Бутлеров и назвал химическим строением. [c.10]

    У. к. первая из кислот, известных человеку (уксус, образующийся при скисании вина). Концентрированная У. к. впервые получена в 1700 г. Шталем, состав ее установлен в 1814 г. Я- Берцелиусом. У. к. распространена в растениях как в свободном виде, так и в виде солей и сложных эфиров образуется в процессе брожения и гниения молочных продуктов. Превращение спиртовых жидкостей в уксус (3—15% У. к.) происходит под действием бактерий уксусного гриба . Промышленный метод получения заключается в окислении ацетальдегида, который синтезируют из ацетилена по реакции Кучерова. У. к. широко применяется значительное количество ее идет на производство ацетона, ацетилцеллюлозы, синтетических лаков и красителей, лекарственных препаратов (аспирин, фенацетин), для крашения и печатания тканей. У. к. применяется также для введения ацетильной группы СН3СО в ароматические амины, для защиты группы КНа от окисления при нитровании в аналитической химии в пищевой промышленности и быту в виде уксуса в медицине и др. Применение находят также соли У. к.— ацетаты. Соли А1, Ре, Сг и др. используются как протравы при крашении тканей. [c.258]

    Ю. Либих существенно упростил органический апализ, что позволило значительно быстрее, чем по методу Берцелиуса, устанавливать эмпирическую формулу соедипения. [c.155]

    Ш. Жерар утверждал, что реакции разложения и образования соединений не дают возможности сделать какой-либо определенный вывод о расположении атомов, но он ошибался, полагая, что только изучение физических свойств веществ может позволить выяснить это расположение Стремление ученого изучать главным образом превращения, а не структуру соединений было своего рода реакцией на неудавшиеся попытки Я. Берцелиуса выяснить порядок расположения атомов в соединениях. В какой-то мере в связи со сложившейся ситуацией Ш. Жерар был прав, когда, убедившись в бесплодности гипотетических построений и произвольных спекуляций, связанных с дуализмом, заявил, что наука ничего не потеряет, замкнувшись исключительно в факты . III. Жерар сознавал, что он вместе с О. Лораном подготовил почву для будущей общей теории, что он дал только новый метод исследования. [c.169]

    А. Л. Лавуазье, — на сжигании навески органического вещества в тех или иных условиях с последующим точным определением продуктов сгорания. Метод совершенствовали И. Я. Берцелиус (применил прямое взвешивание образующейся воды), Ж. Л. Гей-Люссак и Л. Ж. Тенар, сконструировавшие около 1810 г. оригинальный прибор для сжигания навески анализируемого вещества, и др. [c.41]

    Аммиачный раствор окиси цинка. Применяют при определении фтора по методу Берцелиуса. [c.80]

    Знаменитый шведский химик Я. Берцелиус (1779—1848) продолжал линию И. Рихтера, на основе анализа оксидов он определил атомные веса почти всех известных тогда элементов, ввел символы элементов, химические формулы, активно проводил аналитические расчеты на основе правил стехиометрии. Берцелиус стоял у истоков метрологии анализа. Он оценивал ошибки определений, разработал точные методы взвешивания, ему принадлежит методика определения платиновых металлов. Шведский ученый пытался создать новую схему качественного анализа. При анализе силикатов Берцелиус применил фтористоводородную кислоту — прием, широко используемый и по сей день использовал возгонку хлоридов дпя разделения металлов. [c.16]

    Одновременно с этим привлекают внимание исключительно интересные перспективы четвертого уровня — эволюционной химии. О них как об идеале в свое время говорили И. Я. Берцелиус, Ю. Либих, X. Шенбейн, Д. И. Менделеев, С. Аррениус, Н. Н. Семенов и другие исследователи, полагавшие необходимым равняться на лаборатории живых организмов. Химия на этом уровне впервые берет на вооружение метод историзма и с его помощью пытается решить проблему биогенеза, освоить каталитический опыт живой природы, моделировать биосистемы с целью осуществления самых разнообразных процессов — от фотохимичекого разложения воды на кислород и водород до синтеза моделей биополимеров в комплексе с биорегуляторами. Переход на уровень четвертой концептуальной системы уже начался, свидетельство чему— появление массы работ по изучению и освоению предбиологических систем или моделей биосистем. К этим работам относятся, в частности, многие исследования ученых нашей страны — А. А. Баева, И. В. Березина, В. Т. Иванова, Н. К. Кочеткова, И. Л. Кнуянца, Ю. А. Овчинникова, Н. М. Эмануэля и др. [c.30]


    Катализ (этот термин впервые был предложен шведским химиком Берцелиусом в 1855 г.) является исключительно эффективным методом осуществления в промышленности химических превращений. В настоящее время до 90 % всей химической продукции мира изготавливается каталитическим путем. От развития катализа в значительной степени зависит технический прогресс химической, нефтехимической, нефтеперерабатывающей и других отраслей промышленности. [c.414]

    Фрезениус [566 (стр. 612)1 отделял висмут от меди методом Берцелиуса. Анализируемый раствор, содержащий хлорид аммония, медленно прибавляют к разбавленному аммиаку. При этом весь висмут осаждается, а медь остается в растворе. Осадок промывают разбавленным аммиаком. Данные о точности метода отсутствуют. [c.19]

    Несмотря на то, что молибден был открыт в 1778 г. Шееле и его различные соединения были описаны еще Берцелиусом, химия этого элемента в настоящее время разработана еще недостаточно. В литературе часто встречаются противоречивые утверждения, а многие вопросы не нашли своего окончательного решения. Причины такого состояния химии молибдена следует искать, с одной стороны, в многообразии его химических свойств, с другой,— в сходстве многих его соединений в различном валентном состоянии, а также — в недостаточности применяемых до настоящего времени методов исследования. [c.7]

    Жан Батист Дюма (1800—1884) с детских лет работал в аптеках. Будучи учеником одной из женевских аптек, он заинтересовался химией, стал посещать университет и начал исследования. Уже в 1818 г. ои независимо от Я. Берцелиуса установил, что содержание воды в кристаллогидратах подчиняется закону постоянных пропорций. Вскоре он получил известность, предложив рецепт йодной настойки. В те же годы совместно с врачом Ж. Прево (1790—1850) занимался проблемами физиологической химии, установив, в частности, роль почек в организме. В 1823 г. он переехал в Париж, где стал ассистентом у Л. Тенара в Политехнической школе. Здесь он разработал свой известный метод определения плотности паров летучих веществ и использовал его при определениях атомных масс. [c.106]

    Криолит переводят в растворимое состояние примерно так, как это указано выше ири определении фтора по методу Берцелиуса [324]. [c.93]

    В общем при отделении нерастворимого остатка соляную кислоту следует предпочесть серной. Бариты растворимы в горячей концентрированной Нг504 и вновь осаждаются при разбавлении осадок почти-всегда окклюдирует другие сульфаты, в особенности свинец, который прочно удерживается. Значительные количества флюорита в породе вызывают потери кремнезема при обычной обработке кислотами стекло и фарфор слегка разъедаются с образованием растворимых оснований. Для определения фтора и кремнезема в таких рудах пригоден метод Берцелиуса (методы 13 и 14) см. также [14]. [c.35]

    В шестидесятых годах XIX в. бельгийский химик Жан Сервэ Стас (1813—1891) определил атомные веса точнее, чем Берцелиус. В начале XX в. американский химик Теодор Уильям Ричардс (1868—1928), приняв все меры предосторожности (во многом надуманные), определил величины атомных весов с такой точностью, которая только возможна при использовании чисто химических методов. Исследования Стаса и Ричардса ответили на те вопросы, которые в работах Берцелиуса оставались нерешенными. [c.62]

    Я. Берцелиус ошибочно считал, что во всех двойных соединениях находится только один атом окисляемого элемента, металла или неметалла. Поэтому атомные массы большинства металлов и некоторых неметаллов были установлены неправильно (Р, Аз, 8Ь и др.). Он не зиал причины, ограничивающей число атомов, вступающих во взаимодействие друг с другом, и вынужден был принимать во внимание различные косвенные соображения. Естественно, что такой метод не мог привести к вполне определенным результатам. В некоторых случаях при составлении таблицы ученый оставлял нерешенным вопрос о выборе чисел, одинаково вероятных, из которых нужно было принять одно. [c.134]

    Используя различные методы определения атомных масс элементов, Я. Берцелиус в 1826 г. дал повую систему атомных масс (см. стр. 152). В этой таблице атомные массы большинства металлов оказались очень близкими к современным соответствующие оксиды лшогих из них получили правильную формулу, Вместо прежних формул РеОг, РеОз, СиО и СиОг оп принял формулы FeO, ГегОз, СпгО, СиО, СаО, ВаО, АЬОз, МнгОз, СггОа и др. Однако атомные массы щелочных металлов были установлены неточно, так как для их оксидов Я. Берцелиус принимал такой состав NaO, КО и т. д. В 1841 г. В. Реньо внес коррективы в эти формулы, после чего в системе атомных масс Я. Берцелиуса почти не было принципиальных ошибок. Из 54 элементов, известных к концу жизни шведского химика, неправильными оказались атомные массы серебра, бора, бериллия, кремния, ванадия, циркония, урана, церия, иттрия и тория многие из них были исправлены лишь в результате открытия периодического закона Д. И. Менделеева. [c.136]

    Основы гравиметрического анализа — исторически первого метода количественного химического анализа — сложились к середине XIX в. благодаря работам многих ученых, особенно англичанина Р. Бойля, щве-дов Т. У. Бергмана (1735—1784) и Й. Я. Берцелиуса (1779—1848), немцев М. Г. Клапрота (1743—1817), Г. Розе, К. Р. Фрезениуса. В уже упоминавшейся книге К. Р. Фрезениуса Введение в количественный анализ (1846) бьши охарактеризованы не только основные принципы, но и практические приемы гравиметрического метода, включая важнейший из них — операцию взвешивания на аналитических весах, которые применял еще Р. Бойль в середине XVII в. Ко времени К. Р. Фрезениуса погрешность взвешивания на аналитических весах (до 0,0001 г) была уже практически та же, что и ошибка взвешивания на современных аналитических весах повседневного использования ( 0,0002 г). [c.38]

    После того как было установлено понятие хим. элемента и заложены основы хим. атомистики, гл. целью X. стало изучение зависимости св-в хим. соед. от их состава. Тогда же стали привлекать к себе внимание в-ва животного и растит, происхождения, систематич. изучение к-рых привело к появлению новой ветви X., получившей наименование органической. Благодаря работам Берцелиуса, Ю. Либиха, Ж. Дюма и др. были разработаны методы анализа орг. соединений и исследованы мн. природные орг. в-ва. С течением времени был накоплен обширный опытный материал, к-рый потребовал обобщений, направленных на выявление особенностей хим. природы орг. в-в. Так стали возникать первые теории орг. химии. В 1828 Дюма предложил теорию чэтерина>, или масляного газа (позднее названного этиленом), в к-рой этерин рассматривался как составная часть спирта, а также простого и сложного эфиров. При этом спирт и простые эфиры считали гидратами этернна (сильного основания), а сложные эфиры — солеподобными производными этерина и к-т. Теория радикалов, развитая Ф. Велером и Либихом (1832), утверждала, что орг. соед. состоят из сложных групп атомов (радикалов), способных без изменения переходить из одного соед. в другое. [c.652]

    В 1783 г. братья Д елюар (Испания) выделили вольфрамовую кислоту H2W04 из минерала вольфрамита (Ре, Mn)W04. Они же восстановили кислоту углем и назвали полученный металл вольфрамом. В дальнейшем выяснилось, что полученный таким путем вольфрам содержал карбиды. Чистый металл был получен в 1909—1910 гг. Кулид-жем в виде порошка методом восстановления окисла водородом. Ку-лндж также разработал металлокерамическую технологию плотного вольфрама и проволоки. Ока до настоящего времени является общепринятой. В течение XIX в. были выделены Берцелиусом, Велером и другими многочисленные соединения вольфрама и изучены их свойства. Наибольшее развитие химия вольфрама получила в XX в. в связи с расширением областей его применения. [c.222]

    Суспензия оксида цинка. Применяют для отделения марганца (П) от железа (П1) и других элементов. Оксид цинка (ч. д. а.) прокаливают при 1800°С для удаления органи ческих веществ и испытывают на содержание марганца (И) Для приготовления растирают в ступке 25 г тонкоиз мельченного оксида цинка с 20—30 мл воды до густой кон систенции, добавляют 70—80 мл воды и снова хорошо пе ремещивают до получения легко переливающейся массы Полученную суспензию хранят в колбе, закрытой пробкой Аммиачный раствор оксида цинка. Применяют при оп ределении фтора по методу Берцелиуса. Осаждают гидро ксид цинка из раствора хлорида цинка раствором гидрокси да натрия (или калия), осадок отфильтровывают, промывают водой и растворяют в небольшом избытке концентрированного аммиака. Раствор сохраняется довольно долго в закрытой склянке. [c.105]

    В щелочных методах переработки литиевого сырья используют окислы н гидроокиси металлов, а также соли, действующие как основания (обычно карбонаты щелочных, и щелочноземельных металлов). Целью этих методов является разрушение минералов и освобождение окиси лития, которая в дальнейшем обычно извлекается в виде гидроокиси, но иногда переводится и в соли лития. В последнем случае щелочные методы разложения, как правило, утрачивают самостоятельный и приобретают вспомогательный характер, служат только для подготовки сырья к последующей обработке кислотами. Здесь не представляется возможным описывать эти методы. Ограничимся указанием на то, что еще И. Берцелиус [73], а затем и другие исследователи [13, 15] рекомендовали сплавлять сподумен с гидроокисью калия и далее обрабатывать плав азотной кислотой. В наше время было предложено [74, 75] разлагать амблигонит едким натром с последующей обработкой образующегося фосфата лития серной кислотой. Начиная с А. Арфвед-сона [76], неоднократно использовали карбонат калия как реагент для разложения лепидолита перед обработкой его серной кислотой. В частности, предварительное разложение этого минерала карбонатом калия успешно применяли отечественные исследователи [34, 77] в сернокислотном методе переработки лепидолита на соединения лития, рубидия и цезия. Хорошими вспомогательными реагентами являются карбонат и окись кальция [30, 78]. [c.243]

    Применение плавиковой кислоты для разложения поллуцита впервые было предложено К. Шабрье [214]. По существу это был несколько видоизмененный метод И. Берцелиуса [215] — метод подготовки пробы алюмосиликатного минерала для анализа, заключавшейся в разложении пробы плавиковой кислотой с последующим переводом образовавшихся фторидов и фторсиликатов в сульфаты действием серной кислоты. В промышленных масштабах метод К. Шабрье использовался фирмой [216] Шеринг на заводе Адлерсхоф в Берлине. [c.279]

    Исследование пигментов желчи проводилось еще во время алхимиков первым из исследователей, добившимся известного успеха в этой области, был опять-таки Берцелиус. Он изучил методы разделения и очистки пигментов желчи на основании его работ Тидеману и Гмелину [17] удалось найти характерную цветную реакцию для пигментов желчи. Проба Гмелина является самой чувствительной среди всех других, известных для этих веществ, [c.221]

    Берцелиус [325] определял фтор весовым методом в виде Сар2, имеющего низкую растворимость. Ему также принадлежит синтез фторидхлорида свинца Pb lF, который используется в качестве весовой формы при анализах. [c.8]

    Наиболее ранний метод определения фтора в плавиковом шпате и криолите описан Берцелиусом [325], Фторид переводят в растворимое состояние сплавлением с содой, при этом присутствующая кремиекислота образует соответствующие силикаты. После выщелачивания расплава часть кремнекислоты вместе с карбонатом кальция составляет нерастворимый остаток, в то время как NaF полностью переходит в раствор. Главная масса кремнекислоты отделяется с карбонатом аммония, однако небольшое количество ее остается в растворе в коллоидной форме вместе с фторидом натрия. [c.75]


Смотреть страницы где упоминается термин Берцелиуса метод: [c.328]    [c.62]    [c.132]    [c.50]    [c.413]    [c.291]    [c.397]    [c.153]    [c.343]    [c.47]    [c.107]    [c.113]    [c.47]   
Количественный анализ органических соединений (1961) -- [ c.10 ]




ПОИСК





Смотрите так же термины и статьи:

Берцелиус



© 2025 chem21.info Реклама на сайте