Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Третичная структура ферментативная активность

    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]


    Наряду с катализом за счет свободной энергии сорбции (см. 1—4 этой главы) ферментативные реакции находят источник ускорения в том, что молекула субстрата подвергается химической атаке не одной каталитической группой (как это происходит в гомогенно-каталитических реакциях второго порядка), а сразу несколькими. Это связано с тем, что третичная структура белка позволяет сосредоточить в активном центре фермента значительное число электрофильных и нуклеофильных групп, таких как имидазольная, карбоксильная, сульфгид-рильная, аммонийная, фенольная и др. (см. гл. I), которые, как известно из гомогенного катализа, представляют собой общекислотные и общеосновные катализаторы. Именно поэтому в промежуточных фермент-субстратных комплексах в принципе возможна атака сорбированной субстратной молекулы по механизмам общего кислотноосновного катализа. [c.61]

    Для жизненной функции клеток решающее значение имеют белки и нуклеиновые кислоты. Белки — главный органический компонент цитоплазмы. Некоторые белки относятся к структурным элементам клетки, другие — к имеющим важное значение ферментам. Радиационное повреждение белков состоит в уменьшении их молекулярной массы в результате фрагментации полипептидных цепочек, в изменении растворимости, нарушении вторичной и третичной структуры, агрегировании и т. п. Биохимическим критерием радиационного повреждения ферментов является утрата ими способности осуществлять специфические реакции. При интерпретации пострадиационных изменений ферментативной активности in vitro наряду с радиационными нарушениями самого фермента следует учитывать и другие повреждения клетки, прежде всего мембран и органелл. Чтобы вызвать явные изменения ферментативной активности в условиях in vitro, требуются значительно большие дозы, чем in vivo. [c.16]

    В результате изучения взаимодействия ферментов с субстратами и ингибиторами удалось выяснить ряд важных вопросов, касающихся механизма ферментативных реакций. Детальное рассмотрение всех этих исследований увело бы нас слишком в сторону. Поэтому мы остановимся только на некоторых выводах, имеющих непосредственное отношение к предмету этой книги. Прежде всего рассмотрим свойства самого фермента. Активность фермента, как правило, зависит от целостности его третичной структуры. Под действием денатурирующих агентов, изменяющих конформацию фермента, его активность либо уменьшается, либо исчезает полностью. По меньшей мере в одном случае — для рибонуклеазы — установлено, что связывание фермента с субстратом способствует сохранению его конформации даже в присутствии агентов, которые в отсутствие субстрата вызывают денатурацию. Вместе с тем не вся первичная структура необходима для обеспечения активности. Например, фермент папаин, по своим свойствам подобный протеолитическим ферментам, сохраняет свою активность при отщеплении 3/5 его молекулы. Активный фрагмент папаина сохраняет чувствительность к действию денатурирующих агентов, и это свидетельствует о том, что для обеспечения активности необходима определенная третичная структура. В свете этих данных вЪз-никает вопрос почему молекулы ферментов так велики  [c.395]


    Предложено много гипотез, касающихся роли ионов металла в ферментативных реакциях. Не рассматривая эти гипотезы подробно, отметим основные общие положения 1) металл способствует связыванию субстрата с ферментом и входит в состав активного центра 2) комплекс металла с субстратом является фактически активированным субстратом и 3) образование комплекса между металлом и функциональными группами белка способствует поддержанию третичной структуры белка в конформации, необходимой для выполнения каталитической функции. Клотц [187], основываясь на данных об участии ионов металлов в связывании ииркдпн-2-азо-л-диметиланилина сывороточным альбумином быка, предположил, что для пептидаз, требующих наличия нона Мп(П) — слабого комплексообразователя, роль иона металла состоит не в связывании субстрата в основном состоянии. Он полагал, что один из возможных механизмов катализа включает стабилизацию промежуточного тетраэдрического соединения по следующему механизму  [c.125]

    Эффект деформации фермента (эффект вынужденного , или индуцированного контакта) — каталитически активная конформация фермента, возникающая лишь в момент присоединения молекулы субстрата. В современных теориях ферментативного катализа большое значение придается гибкости третичной структуры фермента, в особенности динамическим изменениям пространственной и электронной конфигурации фермент-субстратного комплекса в переходном состоянии. [c.141]

    Хотя активный центр относительно невелик, он должен все же представлять собой довольно сложную структуру. Известно, что он определяет и каталитическую активность, и специфичность, а поэтому должен обеспечить весьма тесное взаимодействие, точное в пространственном (геометрическом) и химическом отношении с молекулами субстрата или с их необходимыми частями. Для проявления активности этого центра необходима его трехмерная структура, кооперативное действие его различных участков, возникающее при их топографическом сближении и соответствующей ориентации. Следовательно, необходима определенная трехмерная структура всей молекулы фермента. В настоящее время принято считать, что активный центр не располагается Б пределах какого-либо небольшого отрезка одной пептидной цепи, а представляет совокупность групп, расположенных на двух или нескольких цепях или на различных участках одной, но сложно изогнутой пептидной цепи. Структуру подобного рода мы видим на гипотетической модели молекулы химотрипсиногена, представленной Г. Нейратом (рис. 12). На модели черными линиями показан активный центр химотрипсина, который занимает небольшую область и включает два остатка гистидина и один остаток серина. Здесь имеется одна единственная пептидная цепь, изогнутая таким образом, что различные участки ее (различные аминокислотные остатки) сближены и образуют каталитически активный центр. Ясно, что каталитическая способность химотрипсина зависит не только от наличия тех или иных функциональных групп, но главным образом от конфигурации всей макроструктуры белка, поскольку эта конфигурация определяет взаимное расположение групп активного центра. Отсюда ясно и значение стабильности макроструктуры (третичной структуры) белка для выявления и сохранения ферментативной активности. [c.74]

    В определенных условиях молекулу рибонуклеазы можно расщепить с помощью фермента субтилизина. При этом разрывается связь между 20-м (аланин) и 21-м (серии) остатками и образуется два пептида — короткий (называемый 5-пептидом), содержащий 20 остатков, и более длинный (называемый 5-белком) из 104 остатков. Поскольку первый остаток цистеина находится в молекуле на 26-м месте, отщепление 5-пептида, состоящего из 20 первых аминокислотных остатков, равнозначно отщеплению хвоста фермента. По отдельности ни хвост , ни 5-белок не проявляют ферментативной активности, но их экви-молярная смесь активна. Очевидно, несмотря на разрыв связи между 20-м и 21-м остатками, благодаря взаимодействию боковых цепей образуется активная третичная структура. Если, так же как это делалось в случае нативного фермента, восстановить, а затем вновь окислить 5-белок, то получающийся продукт ничем не отличается от первоначального 5-белка. После добавления к реконструированному 5-белку 8-пептида активность в большой степени восстанавливается. По-видимому, правильное образование дисульфидных связей происходит и в отсутствие 5-пептида. Однако он все же несет какую-то определенную функцию, так как в его присутствии уменьшается количество осадка, состоящего, как предполагают, из молекул, связанных поперечными связями. Если опыт по восстановлению и последующему окислению производится с раствором, содержащим как 5-пептид, так и 5-белок, процент растворимого активного материала оказывается более высоким. [c.280]

    Кроме активного центра различают еще два центра субстратный и аллостерический. Под первым понимают участок молекулы фермента, к которому присоединяется субстрат, подвергающийся ферментативному превращению, под вторым — участок молекулы фермента, в результате присоединения к которому того или иного низкомолекулярного вещества изменяется третичная структура белковой молекулы, а следовательно, и конфигурация активного центра, что сопровождается повышением или снижением каталитической активности. [c.116]


    При изучении механизма химической реакции, катализируемой ферментами, исследователя всегда интересует не только определение промежуточных и конечных продуктов и выяснение отдельных стадий реакции, но и природа тех функциональных групп в молекуле фермента, которые обеспечивают специфичность действия фермента на данный субстрат (субстраты) и высокую каталитическую активность. Речь идет, следовательно, о точном знании геометрии и третичной структуры фермента, а также химической природы того участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Участвующие в ферментативных реакциях молекулы субстратов часто имеют небольшие размеры по сравнению с молекулами ферментов, поэтому было высказано предположение, что при образовании фермент-субстратных комплексов в непосредственный контакт с молекулой субстрата, очевидно, вступает ограниченная часть аминокислот пептидной цепи. Отсюда возникло представление об активном центре фермента. Под активным центром подразумевают уникальную комбинацию аминокислотных остатков в молекуле фермента, обеспечивающую непосредственное связывание ее с молекулой субстрата и прямое участие в акте катализа (рис. 4.2). Установлено, что у сложных ферментов в состав активного центра входят также простетические группы. [c.122]

    Ввиду непрерывности третичной структуры даже локальные конформационные изменения на одном участке белковой М., передаваясь и распространяясь по М., могут вызвать локальные же конформационные превращения, затрагивающие центр ферментативной активности. Т. обр., механическое воздействие может включать или выключать каталитич. центр М. Но этот центр, в свою очередь, будучи включенным, может менять электрохимич. свойства среды (за счет продуктов реакции напомним, что все макромолекулы биополимеров — полиэлектролиты). Можно представить себе ситуацию, когда продукты реакции таким образом меняют pH, что активная макромолекула деформируется и утрачивает тем самым активность здесь даже не требуется внешнее поле. После удаления продуктов реакции М. возвращается в исходное состояние, центр снова включается, и начинается новый цикл. [c.64]

    Основной причиной инактивации ферментов является изменение третичной структуры белковых молекул. Упаривание ферментных растворов под вакуумом (при t=37° ) способствует сохранению ферментативной активности. Применение при упаривании пеногасителей основано на их способности вытеснять пенообразователь из поверхностного слоя и разрушать тем самым структуру пены. Добавление некоторых солей повышает устойчивость белков при высушивании их растворов, что объясняется, по-видимому, созданием мостичных связей между белковыми молекулами, препятствующих. развертыванию пептидных цепей. [c.159]

    Успехи в изучении етруктуры белков, н в частности лизоцима, в кристаллическом состоянии методами рентгеноструктурного анализа неизбежно повлекли за собой вопрос о том, насколько третичная структура фермента, и в особенности его активно1 о це1гтра, в кристалле близка к таковой в растворе. С одной стороны, можно было бы ожидать близкое сходство, если не идентичность, между структурами фермента в данных двух физических состояниях, поскольку по меньшей мере одна треть объема для большинства кристаллических белков занята водой [35], причем по данным ЯМР эта вода имеет жидкую структуру [36]. С другой стороны, определенные ограничения в подвижности фермента в кристалле, а также взаимные стерические влияния молекулы в кристаллической решетке (возможно, различные для разных полиморфных модификаций кристаллического фермента) могут, вообще говоря, сказываться на топографии активного центра, доступности его по отношению к молекулам субстрата и эффекторов и в целом на механизме ферментативного катализа. [c.155]

    Вещество, подавляющее активность фермента, называется его ингибитором. Поскольку наши знания о ферментах приближаются к молекулярному уровню, мы делаем гигантские шаги в создании соединений, ингибирующих ферменты. Особенно большую роль сыграло определение молекулярных структур методом компьютеризованного рентгеноструктурного анализа. Установление механизма ферментативного катализа химических реакций и третичной структуры (конформации) белков принесло богатые плоды. [c.95]

    То обстоятельство, что при возникновении третичной структуры происходит сближение функциональных групп, пространственно разделенных в первичной последовательности, должно иметь очень большое значение в механизме ферментативного катализа. В частности, область активного центра фермента (участок сорбции субстрата и его химических превращений) образуется функциональными группами, которые в первичной структуре расположены далеко друг от друга, но тесно сближаются при свертывании полипептидной цепи. [c.29]

    Рассмотрим теперь крайне важный вопрос о роли вторичной и третичной структуры белка в ферментативной активности. Из всего сказанного ясно, что активный центр фермента набран из групп сближенных благодаря своеобразной пространственной [c.146]

    То, что сворачивание полипептида в белок происходит в процессе синтеза на рибосоме, т. е. ко-трансляционно, следует из целого ряда косвенных свидетельств. Одно из них— приобретение растущим пептидом на рибосоме активностей, присущих готовому белку со сформированной третичной структурой. Давно известный пример — синтез Р -галактозидазы ферментативная активность этого белка требует не только сворачивания полипептидной цепи в третичную структуру, но и объединения четырех субъединиц в четвертичную структуру оказалось, что растущая цепь до своего завершения, будучи присоединенной к рибосоме, уже способна ассоциировать со свободными субъединицами белка, и комплекс на рибосоме проявляет Р-галактозидазную активность. [c.273]

    Недавно было установлено, что РНК может функционировать в качестве катализатора, подобно ферменту. Оказалось, что ферменты рибонуклеазы Р содержат 80 /о РНК, которая и выполняет основную функцию. В других случаях была обнаружена ферментативная активность РНК и в отсутствие белка. Не подлежит сомнению, что это связано со значительной коиформаци-ониой гибкостью и со сложной третичной структурой РНК. Надо думать, что эти, еще далеко недостаточно изученные, явления существенны для регуляции генов. Вполне возможно, что в клетках функционируют и другйе, еще не выявленные виды РНК. [c.231]

    Наиболее убедительным доказательством того, что первичная структура определяет вторичную и третичную, могут, по-видимому, служить опыты по восстановлению нативной структуры белка после денатурации ренатура-ция белка). Если, например, полностью развернуть молекулу рибонуклеазы путем восстановления четырех ее дисульфидных мостиков меркаптоэта-нолом в 8 Af мочевине, а затем вызвать реокисление таких развернутых молекул в контролируемых условиях, то молекулы (от 95 до 100%) вновь приобретают нативную конформацию, что подтверждается восстановлением не только физических свойств, но и ферментативной активности. Этот опыт схематически представлен на фиг. 42. Статистические расчеты показывают, что если бы реконструкция дисульфидных мостиков происходила совершенно произвольно, то нативную конформацию приобретало бы лишь небольшое число молекул —около 1%. В табл. 20 приведены данные по рена-турации некоторых белков. Во всех случаях, за исключением инсулина, степень восстановления нативных структур значительно превышает величину, которой следует ожидать, исходя из статистических соображений. Эти данные вовсе не означают, однако, что процесс образования дисульфидных связей в белках может протекать in vivo без направленного катализа. Реконструкция нативных белковых структур после восстановительного разрыва дисульфидных мостиков представляет собой слишком медленный процесс, не соответствующий скорости синтеза биологически активных белков [c.113]

    Все известные в настоящее время ферменты представляют собой белки, причем их каталитическая активность зависит от степени сохранности нативной структуры белка. Например, разрушение полипептидных цепей в результате кипячения фермента в растворе сильной кислоты или обработки трипсином обьгано приводит к потере его каталитической активности. Это свидетельствует о том, что первичная структура белка необходима для проявления его ферментативной активности. Болёе того, стоит нам только нарушить характерную для нативной молекулы фермента упаковку полипептидной цепи (цепей), нагревая белок или воздействуя на него экстремальными значениями pH или денатурирующими агентами, как каталитическая активность фермента исчезает. Таким образом, для ферментативной активности белков важное" значение имеет сохранение их первичной, вторичной и третичной структур. [c.228]

    Потеря специфики вторичной и третичной структур называется денатурацией белка. При этом активный центр фермента демонтируется , что приводит к потере каталитической активности. Денатурация может быть вызвана добавкой концентрированного раствора электролита или органических растворителей, а также повышением температуры. Последнее обстоятельство обусловливает своеобразный ход температурной зависимости скорости ферментативных реакций. При умеренных температурах повышение температуры сопровождается, как обычно, увеличением скорости. Затем достигается максимум, после чего дальнейщее повышение температуры приводит в результате прогрессирующей денатурации фермента к падению скорости, вплоть до полного прекращения каталитической реакции. [c.430]

    Ассоциация полипептидных цепей в более крупные агрегаты носит название четвертичной структуры. Силы, участвующие в образовании этой структуры, имеют, очевидно, ту же природу, что, и силы, вызывающие образование третичной структуры, но они реализуются не во внутримолекулярном, а в межмолекулярном взаимодей-ствии.-Подобная ассоциация белковых субъединиц, распространена, по-видимому, очень широко. В ряде случаев она имеет определенное значение для ферментативной активности (например, обеспечивает способность гемоглобина связывать кислород), но точные механизмы этих эффектов до сих пор не ясны. В общих словах, причина образования подобных ассоциатов состоит в том, что в результате экранирования поверхностных гидрофобных участков молекулы стабильность мицеллы увеличивается. Так, две молекулы белка, не имеющие достаточного количества гидрофильных остатков для образования гидрофильного поверхностого слоя вокруг гидрофобного ядра, в водном растворе, где они образуют димер с закрытыми гидрофобными областями, становятся более стабильными. [c.30]

    Трехмерная структура белка высокоспецифична. Иными словами, иоли-нептидная цепь или цепи не просто свертываются с образованием структуры, близкой к сферической свертывание проходит ряд строго фиксированных этапов, в результате чего возникает уникальная или почти уникальная конфигурация. Этот вывод непосредственно следует из того факта, что биологическая активность белков, в частности ферментативная активность, крайне чувствительна к любым измененияйг в третичной структуре белка (см. ниже). Ввиду большой сложности и высокой специфичности третичной структуры, естественно, очень важно, во-первых, изучить тонкие дета.ли этой структуры и, во-вторых, попытаться понять природу сил, ответственных за ее поддержание. Данные по вязкости, коэффициенту трения и светорассеянию дают информацию относительно общей топографии макромолекул. Более точные сведения, касающиеся деталей третичной структуры белков, удается получить с помощью рентгеноструктурного анализа. [c.103]

    Подвергая нативную рибонуклеазу действию меркаптоэта-нола в присутствии мочевины, можно восстановить четыре специфические дисульфидные связи до свободных сульфгидрильных групп и разрушить вторичную и третичную структуру молекулы. Молекула восстановленной рибонуклеазы не обладает ферментативной активностью и состоит из одной полипептидной цепи, содержащей восемь остатков цистеина. Присутствие мочевины в данном случае существенно, так как дисульфидные связи не восстанавливаются, пока сохраняется вторичная и третичная структура. При окислении восстановленной рибонуклеазы с помощью кислорода в отсутствие мочевины в молекуле вновь образуются дисульфидные связи. Если бы при этом была возможна любая комбинация цистеиновых остатков, то всего существовало бы 105 вариантов расположения дисульфидных мостиков в реконструированной молекуле, т. е. вероятность образования системы связей, соответствующей нативному ферменту, была бы меньше 1%. Этот расчет является слишком упрощенным, поскольку мы не учитывали, что распределение остатков цистеина по цепи неравномерно и вероятность связывания соседних сульфгидрильных групп должна быть больше, чем для отдаленных друг от друга групп. Следовательно, некоторые из этих 105 вариантов более вероятны, но это не влияет существенно на результат. Итак, если фермент активен только в конфигурации, которая идентична нативной, и образование дисульфидных мостиков происходит хаотическим образом, то после восстановления и последующего окисления рибонуклеазы ее активность должна равняться примерно 1 % от исходной. Если же дисульфидные связи образуются некоторым специфическим образом, то после окисления активность должна быть равна 1QQВ дея- [c.278]

    Получены экспериментальные доказательства того, что гистидин входит в состав активного центра химотрипсина. При обработке фермента Ъ-1-тозиламидо-2-фенилэтилхлор-метилкетоном (ТФХК) один из двух остатков гистидина в молекуле химотрипсина алкилируется, что сопровождается полной утратой ферментативной активности. Если фермент предварительно инкубировать с ДФФ, то алкилирования не происходит. Алкилирование не идет также в растворе 8 М мочевины. Следовательно, необходимым условием для алкилирования химотрипсина является сохранение вторичной и третичной структуры и нормальных каталитических свойств [31]. В полипептидной цепи фермента этот остаток гистидина расположен далеко от активного серина и должен поэтому приблизиться к активному серину за счет изгиба пептидной цепи. Можно предполагать, что за счет изгибания пептидной цепи с активным серином сближается также та часть молекулы фермента, которая определяет его специфичность. Таким образом, представление об активном центре фермента отличается достаточной сложностью. [c.108]

    Очень важный и принципиальный вопрос химии белка заключается в том, определяется ли вторичная и третичная структура белка однозначно его первичной структурой, т. е. порядком чередования аминокислот в полинентидной цепи. Ответ на этот вопрос дается опытами Анфинсена, выполненными с рибопуклеа-зой. В белке 8—8-мостики постепенно разрывались путем восстановления меркаптоэтанолом в растворе 8М мочевины. По мере разрушения дисульфидных связок происходит инактивация фермента рибонуклеазы, вплоть до полного исчезновения каталитических свойств. После окисления сульфгидрильных групп воздухом наблюдается полный возврат к исходному белку как в отношении числа мостиков, так и ферментативной активности. В этом случае сшивка 8—8-связей осуществляется обязательно в том же порядке, как в активном белке. Однако известны и противоположные примеры, особенно если белок состоит из нескольких цепей, соединенных дисульфидными сшивками. Так, например, восста- [c.85]

    Можно сформулировать механизм действия ферментов следующим образом. Два субстрата, один из которых содержит связь А—В, а другой связь С—О, присоединяются к каким-то группам на макромолекуле фермента. При этом атомы АВ и СО оказываются в непосредственной близости друг от друга и в нужной пространственной конфигурации. Роль катализатора в том, что он помогает расслабить связи А—В и С—В в обоих субстратах и тем самым способствует образованию новых ковалентных связей А—С и В—В. Для того чтобы осуществилась химическая реакция, однако, все равно требуется тепловая флюктуация. Процесс, описываемый уравнением АВ- СВ АС ВВ, происходит на расстояниях порядка длины химической связи, т. е. порядка немногих ангстрем. Поэтому казалось непонятным, почему ферментами являются белковые макромолекулы сравните.тьно больших размеров (достигающих мнопгх десятков ангстрем). Было высказано предположение, что на поверхности белковой макромолекулы существует локальный центр ферментативной активности, состоящий из небольшого числа групп, расположенных близко друг от друга. Эти группы могут принадлежать звеньям полипептидной цепи, весьма удаленным друг от друга, но сближенным при закручивании цепи во вторичной и третичной структуре. Поэтому ферментативная активность часто столь чувствительна к денатурации белка. Прямьш доказательством теории активного центра явились опыты, в которых макромолекула фермента расщеплялась на осколки, сохранявшие свою каталитическую активность. [c.141]

    Первые опыты подобного рода были проделаны в нашей лаборатории на двух ферментах — трипсине и альдолазе. Фрагменты этих белков с молекулярным весом 2500—3000, т. е. составлявшие не более чем 10% всей макромолекулы белка, оказались ферментативно активными. Далее Перлман показала, что ферментативная активность сохраняется в осколках пепсина, проходящих через диализациопную мембрану, а Смит обнаружил, что деградация фермента паиаина, вплоть до отщепления с помощью фермента амииопептидазы 122 аминокислотных остатков из 187 от его полипептидной цепи с К-конца, дает продукт с полной каталитической активностью. Следовательно, для осуществления акта ферментативного катализа вся макромолекула не нужна. Достаточна относительно небольшая область белка — полипептид, состоящий из 20—30 аминокислотных остатков. Важно, однако, сохранение вторичной и третичной структуры вблизи ферментативного центра. Это проявлялось весьма ярко при разрыве дисульфидного мостика в каталитически активном фрагменте трипсина. Восстановление [c.141]

    Угнетение ферментативной активности увеличением конечного продукта связано не с синтезом фермента, а с его функцией катализатора. Ферменты обладают высокой лабильностью вследствие гибкости их третичной и четвертичной структуры и локального состояния их активного центра. Поэтому условия, в которых протекает реакция, могут играть роль регуляторов скорости ферментативных реакций. Часть этих условий мы уже рассмотрели, это главным образом неспецифические условия реакционной среды, такие как pH, температура, ионная сила, редокспотенциал. [c.240]

    Ясно, что в этом явлении участвуют раз.личные типы молекулярных си.я, суш,ественные для образования вторичной и третичной структуры белка. Так, например, если разорвать водородные связи в полипептидной цепи с помощью 8М мочевины и в этих условиях вести окисление 8Н-групн, то образование 8—8-мостиков происходит хаотически и первоначальная структура макромолекулы восстанавливается только в 1% случаев, как об этом можно судить по восстановлению ферментативной активности. Такая же цифра ожидается, исходя из теоретико-вероятностных соображений, если сшивание 8Н-групн происходит совершенно случайно. Другой тип сил, участвующих в этой реакции, — водородные связи ОН-грунп тирозинов и СОО -групп дикарбоновых кислот. [c.147]

    Однако на примере ряда ферментов, и рибонуклеазы в частности, было показано, что не бся молекула, а лишь некоторая ее часть (активный участок) ответственна за каталитическую активность. Так, Ричардс, используя фермент субтилнэи /, расщепил молекулу рибонуклеазы по связи между звеньями 20 и 21 (пептидная связь Ala — Ser), и при этом вторичная и третичная структуры удержали молекулу как целое. Сохранились и ферментативные свойства. Но при хроматографии на кислом ионообменнике короткий пептид из 20 аминокислотных остатков отделился от остальной части. Обе части молекулы были лишены ферментативной активности, однако прн сменгении их активность вновь возникала. У отделенной больпк й части белковой молекулы еще сохранилась способность связывать обычный для рибонуклеазы субстрат ферментативной реакции, но не расщеплять его. П])и гидролизе рибонуклеазы карбоксипептидазой и отщеплении с С-коица трех аминокислот — валина, серина и аланина активность рибонуклеазы не страдает. При гидролизе пепсином разрывается четвертая связь с С-конца и отщепляется кроме валина, серина и аланина еще н аспарагиновая кислота. Тогда остаток рибонуклеазы полностью теряет активность. Подобным же образом устанавливается существенность двух остатков His в положениях 12 и 119. Сказанное имеет целью дать понятие об исследовании структуры белка как фермента. [c.703]

    Так как ферменты — катализаторы определенных химических реакций, то следует количественно изучать их по влиянию на кинетику соответствующей реакции. Для получения сколько-нибудь ясных и новторимых результатов необходимо пользоваться высокоочищенньши, в частности кристаллическими, препаратами ферментов. Сама по себе ферментативная реакция изучается на чистой системе, состоящей из буфера, субстрата (или субстратов) и фермента. Следует всегда помнить, что подобный модельный эксперимент весьма далек от обстановки, в которой ферменты действуют в клетке. В клетке ферменты часто включены в форменные образования, или в так называемую структуру . Одно время полагали, что, измеряя кинетику реакции в присутствии добавки чистого кристаллизованного фермента, мы выясняем максимальную каталитическую активность, на которую способен данный белок. На самом деле это может быть и неверно. Вполне возможно, что, будучи включен в форменные элементы, фермент усиливает свое действие, так как может произойти благоприятное изменение его вторичной и третичной структуры. [c.155]

    Высокая скорость ферментативных реакций объясняется, с одной стороны, как всегда нри катализе, сильным снижением энергии активации реакции. Так, при гидролизе казеина кислотой энергия активации 20,6 ккал моль, а при гидролизе трипсином — только 12 ккал моль. Гидролиз сахарозы кислотой требует энергии активации 25,5 ккал моль, а ферментативный (сахарозой) — лишь 12—13 ккал моль. С другой стороны, в ферментативных реакциях не меньшую роль играет нредэкспо-ненциальный множитель уравнения Аррениуса, так как величина этого множителя, как правило, на много порядков выше, чем в реакциях обычного типа. Есть доказательства того, что ферменты содержат центры ( карманы ), фиксирующие субстрат на поверхности их молекул, и вторые центры, осуществляющие реакцию. Фермент может быть активен в том смысле, что он подтягивает активный центр к месту его действия, несколько изменяя свою вторичную или третичную структуру. [c.740]

    Затем был найден противоположный случай мутант P и его ревертант оказались разделенными на генетической карте расстоянием порядка половины протяженности всего цистрона. Соот-ветстпелно были найдены в картине отпечатков пальцев 2 различных полипентидных фрагмента, измененных по сравнению с белками дикого типа. В рассматриваемом случае расстояние между измененными звеньями полипептидной цепи близко к по-.ловине ее длины. Интересной представляется возможность исправить повреждение в белке, затрагиваюш ее его ферментативную активность, с помогцью второго изменения в достаточно удаленном звене цепи. На первый взгляд, подобный факт противоречит положению об активном центре фермента. Однако такое заключение является поверхностным. Активный центр фермента содержит функциональные группы, достаточно удаленные друг от друга по полипептидной цени, но сближаемые вследствие складывания цепи во вторичной и третичной структуре. Именно благодаря этому обстоятельству повреждение цепи, отражаюш,ееся на третичной структуре (например, введение заряженной боковой группы), может разрушить активный центр фермента, а новое изменение, восстанавливающее первоначальную третичную структуру, может произойти совсем в другом звене цепи. Возможность бесконечно варьи- [c.419]

    Имидазольная группировка входит в активные центры таких ферментов, как холинэстераза, рибонуклеаза, трипсин, хи-мотрипсин и др. Особенной способностью к присоединениям обладает атом N3 имидазольной группировки, что приводит к ее ацилированию и фосфорилированию с образованием неустойчивых Ы-ацил- и Ы-фосфорилпроизводных в качестве промежуточных веществ при ферментативных превращениях. Однако несомненно, что строение активного центра в целом непосредственно связано с вторичной и третичной структурой бел- [c.217]

    В непрерывной полипептидной цепи рибонуклеазы попарно связаны дисульфидными мостами остатки цистеина, обозначенные одинаковыми номерами. Очевидно, что сама по себе последовательность аминокислот в молекуле рибонуклеазы еще совершенно ничего не говорит о ее каталитическом действии на связь фосфорной кислоты с рибозой в РНК. В высшей степени интересны исследования рибонуклеазы, выполненные Анфинсеном. Если подействовать р-оксиэтилмеркаптаном на раствор рибонуклеазы в водном 50%-ном растворе мочевины (где а-спираль нарушена полностью) и таким образом разорвать все S-S-мосты, то каталитические свойства ферментов полностью исчезают. Однако если полученный белок, содержащий 8Н-группы на месте S—S-мостов и освобожденный от мочевины, окислить воздухом, то все SH-группы попарно окисляются в S—S-мосты, структура рибонуклеазы воссоздается, и вновь приобретается активность. Следовательно, S-S-мосты в данном белке (и это типично) возникают на прежних местах и, несомненно, одновременно воссоздается не только вторичная, но и третичная структура, свойственная рибонуклеазе. Если же окисление производить в растворе мочевины, где обычные водородные связи вторичной структуры нарушены, то сшивание происходит в беспорядке или в ином порядке и активного фермента не получается. Таким образом, как оказалось в этом случае, пе дисульфидные мосты, а водородные связи вторичной структуры предопределяют третичную структуру, сближающую определенные цистеиновые SH-группы и создающие возможность окисления их в цистиновые мосты S—S. Вместе с тем ясно, что за ферментативную активность ответственна совокупность первичной, вторичной и третичной структур. [c.743]

    Итак, для многих биокатализаторов рациональное объяснение высоких скоростей ферментативных реакций может быть дано на основании относительно нростых представлений. Молеку-тярный базис биокатализа заложен фактически в том, что в рамках третичной структуры белковой глобулы возможно существование высокоорганизованных активных центров, где обеспечено надлежащее пространственное расположение сорбционного и каталитического участков (комплементарное по отношению к молекуле субстрата) и закреплены в определенном но-тожении по отношению друг к другу компоненты нолифункциональной реакции. [c.212]

    Ферментативный катализ идет на поверхности фермента. Превращаемые вещества называются Jб m Jfl/иiшм. Превращение субстрата происходит в области активного центра, который сформирован в третичной структуре больщинства ферментов. У простых белков-ферментов активный центр образован сближенными в пространстве радикалами аминокислот первичной структуры. У сложных белков-ферментов здесь находятся кофакторы. В активном центре вьщеляют [c.63]


Смотреть страницы где упоминается термин Третичная структура ферментативная активность: [c.169]    [c.83]    [c.169]    [c.761]    [c.66]    [c.386]    [c.297]    [c.386]    [c.146]    [c.420]    [c.700]    [c.702]   
Стратегия биохимической адаптации (1977) -- [ c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Ферментативная активность



© 2024 chem21.info Реклама на сайте