Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкие газы растворимость в воде

    Ниже приведена растворимость редких газов в воде в зависимости от температуры  [c.293]

    Растворимости газов в воде в обычных справочниках редко посвящают больше чем одну—две страницы и в основном ограничиваются данными для небольшого числа газов при атмосферном давлении и невысоких температурах. Между тем есть потребность в знании растворимости в воде самых разнообразных газов в широкой области температур и давлений. [c.3]


    При равновесии газа с жидкой водой не только вода содержит растворенный газ, но и газовая фаза содержит пары воды. Водяные пары в газовой фазе уменьшают содержание самого газового компонента, что приводит к уменьшению его растворимости в воде. Растворимость газа в воде и воды в газе — две стороны одного и того же явления (фазового равновесия газ-вода). В общем случае решение задач фазового равновесия требует совместного рассмотрения растворимости газа в воде и воды в газе. Не редки случаи, когда предсказание растворимости газа в воде ограничено знанием растворимости водяного пара в газе, закономерности изменения которой при высоких давлениях известны недостаточно полно. В табл. 36—54 приводятся экспериментальные данные по содержанию водяного пара в различных сжатых газах, равновесных с жидким водяным раствором. Сведения о содержании водяного пара в газовой фазе при весьма высоких температурах можно получить из рис. 27-42. [c.80]

    На практике наркотическое действие редких газов при обычном давлении сильно ограничивается их малой растворимостью в воде и соках организма. Но чем выше парциальное давление и атомный вес инертного газа, тем значительнее его действие. Гелий при 100, а неон при 15 ат парциального давления не оказывают заметного влияния на поведение мелких животных. Аргон вызывает наркоз приблизительно при И, криптон —при 3,5 ат, ксенон способен оказывать наркотическое действие при давлении ниже атмосферного. [c.162]

    Зависимость растворимости отдельных газов от температуры различна, как то видно, например, из данных рис. -2. Увеличение растворимости газа под обычным давлением с ростом температуры является сравнительно редким исключением. Это имеет место, например, при растворении водорода в жидком NHз, кислорода в жидкой ЗОз, а также некоторых газов в органических жидкостях. Для воды, как растворителя, подобные случаи под обычным давлением пока твердо не установлены. Однако в интервале 80—100 °С растворимость часто выравнивается. Под повышенным давлением последующее ее возрастание с температурой во многих случаях (Оз, Нз и др.) наблюдается весьма отчетливо. [c.161]

    Если растворенные газы не вступают в химические реакции с содержащимися в воде солями, то последние влияют на растворимость газов чисто физически, изменяя свойства воды как растворители (эффект Сеченова). Этот эффект приводит в большинстве случаев к уменьшению растворимости (высаливание) и редко к увеличению растворимости (всаливание). [c.129]


    Сероводород (Н25) — бесцветный горючий газ с характерным резким запахом, хорошо растворимый в воде. Плотность его 1,538 г/л, теплота сгорания 2,3 МДж/м , температура кипения 60°К. Сероводород высокотоксичный газ, при концентрации его в воздухе более 0,1% может наступить летальный исход предельно допустимое содержание в воздухе 0,01 мг/л. Сероводород встречается в свободных природных газах, обычно его концентрация редко превышает 1%. В газах, связанных с карбонатно-сульфатны-ми толщами, концентрация Н28 увеличивается до 10—20, редко до 50%. Сероводород встречается также в вулканических и фума-рольных газах. В природе известны разные источники Н28 биохимическое окисление ОВ, восстановление сульфатов сульфат-редуцирующими бактериями, при химическом восстановлении сульфатов, при термолизе ОВ и др. Промышленную ценность представляют газы, содержащие 0,05-0,1% сероводорода. [c.46]

    Получение и свойства кислорода. Обычный кислород состоит из двухатомных молекул Оз- Это бесцветный газ, не обладающий запахом, слабо растворимый в воде — 1 л воды при 0° и 1 атм растворяет 48,9 мл кислорода. Кислород конденсируется в бледно-голубую жидкость при температуре кипения —183,0° и при дальнейшем охлаждении замерзает при —218,4°, образуя бледно-голубое твердое кристаллическое вещество. В твердом, жидком и газообразном состоянии кислород обладает парамагнитными свойствами. Парамагнетизм явление редкое, парамагнитными свойствами обладают переходные металлы и их металлические соли большинство других веществ — диамагнитны. [c.100]

    Самый термин редкие земли давным-давно устарел. Землями прежде называли простейшие вещества, обладающие основными свойствами, которые не плавятся и, вообще, не изменяются при нагревании, почти не растворимы в воде и не выделяют с кислотами пузырьков газа. [c.28]

    Сероводород (шз) бесцветный горючий газ с характерным резким запахом, хорошо растворимый в воде. В свободных природных газах его концентрация редко превышает 1 %, в газах из карбонатно-сульфатных толщ до 10-20, редко до 50 %. Сероводород чаще всего образуется в результате биологического восстановления сульфатов, растворенных в водах, сульфат-редуцирующими бактериями, а с глубины 2-3 км - термокаталитического преобразования сернистых компонентов нефтей и химического восстановления сульфатов. Часть сероводорода имеет глубинное происхождение. [c.8]

    Эш цифры рисуют нам удивительное постоянство в отношении про- порциональной зависимости между аргоном, криптоном и ксеноном в газах источников, в рудничных газах, в вулканическом газе и в воздухе. Таким образом теория Муре и Лепапа, по которой все природные газовые смеси должны содержать составляющие Их элементы в тех же соотношениях, в каких они находятся в воздухе, приобретает значительный вес. Как уже было отмечено выше, различная растворимость редких газов в воде препятствует точному применению этой теории, но присутствие этих элементов почти во всех исследованных газах, а также ассоциация этих элементов с гелием, находят в этой теории более или менее удовлетворительное объяснение. [c.24]

    Помпмо дирижаблестроения гелий применяется и для других целей. Гелий в числе других редких газов служит наполнителем для специальных ламп/ затем гелий применяется в водолазных приборах, так как его добавление к кислороду облегчает выделение углекислоты из легких, что дает возможность более длительного пребывания под водой. Химическая инертность гелия, высокая теплопроводность и другие свойства дают возможность найти для него широкое применение во многих областях промышленности. Малая растворимость гелия в расплавленных металлах дает возможность применять его в металлургической промышленности при различных отливках, когда требуется предохранить их от образования раковин и от реагирования расплавленных металлов с другими газами. Благодаря своей невоспламеняемости и большой теплопроводности гелий может быть применен для тушения пламени. Опыты, произведенные в Америке над тушением пламени горючих газов гелием, показали, что в этой области гелий превосходит и углекпслоту и азот, а также н аргон. [c.88]

    Необратимая сульфатация пластин при нормальном уходе за аккумулятором наступает редко. Как правило, она сопутствует появившемуся короткому замыканию, когда трудно зарядить аккумулятор, и у него создается повышенный саморазряд. Необратимая сульфатация может появиться также при очень длительном хранении аккумулятора с электролитом без подзаряда или в разряженном состоянии. Заключается необратимая сульфатация в том, что РЬ504 покрывает активную массу толстым слоем в виде крупных кристаллов. При заряде они медленно растворяются в электролите, у поверхности активной массы не хватает ионов свинца для заряда, начинает выделяться газ. Рекомендуют в этом случае заливать аккумулятор водой для увеличения растворимости РЬ804 и заряд вести током малой плотности. Однако эти меры могут помочь только после устранения короткого замыкания, если оно имело место. [c.366]


    При нагревании с кислородными кислотами хромовая кислота выделяет кислород, напр., с серною 2СгО - - 3№50 = = Сг (50 ) - -0 + ЗНЮ. Понятно, вследствие этого, что смесь хромовой кислоты или ее солей с серною кислотою составляет отличное окисляющее средство, которое употребляется часто в химической практике и в технике, для некоторых случаев окисления. Так, №5 и 50 переводится этим путем в Н ЗО . Действуя как сильно окисляющее вещество, СЮ переходит в окись Сг Оотдавая половину содержащегося в нем кислорода 2СЮ = Сг-О О 558]. Действуя на раствор иодистого калия, СгО, как многие окислители, выделяет иод, причем реакция идет пропорционально содержанию СгО , и количество освобождающегося иода может служить для определения количества СгО (количество иода может быть с точностью определяемо иодометрически, гл. 20, доп. 535). Накаливая хромовый ангидрид в струе аммиачного газа, получают тоже окись хрома, воду и азот. Во всех случаях, когда хромовая кислота действует окислительно при нагревании и в присутствии кислот, продукт ее раскисления составляет соль СгХ окиси хрома зеленого цвета, так что красный или желтый раствор соли хромовой кислоты переходит при этом в зеленый раствор соли окиси хрома СгЮ . Окись эта сходна с А1ЮЗ, РеЮ и тому подобными основаниями состава кЮ . Это сходство видно в трудной растворимости безводной окиси в кислотах, в студенистом виде коллоидального гидрата, в образовании квасцов [и] летучего безводного хлорного хрома r l . в применении гидрата для протравы при крашении и т. п. Окись хрома, r O редко в малых количествах встречается в хромовой охре, образуется окислением хрома и низших его окислов, раскислением и разложением солей хромовой кислоты (напр., прокаливанием аммиачной и ртутной солей) и распадением солеобразных соединений самой окиси СгХ или Сг Х , подобно глинозему, с которым окись хрома разделяет и то свойство, что образует слабое основание, легко дающее, кроме средних СгХ , двойные и основные соли. Здесь особо примечательно, что соли окиси хрома обладают или фиолетовым, или зеленым цветом даже при совершенно том же составе, так что нагревание или другие условия переводят [c.237]

    На большинстве газовых установок и на некоторых коксовальных установок аммиак улавливается непосредственной промывкой в скрубберах охлажденного газа водой или очень слабым раствором аммиака, поступающим из холодильников, и т. д. Так как струя газа несет с собой много веществ кислотного характера, также растворимых в воде, как например сероводород, двуокись углерода и т. д., то растворенный аммиак до известной степени реагирует с ними. Полученный таким путем раствор аммиака лротекает через дестилляционный аппарат, в котором отгоняется практически весь аммиак, как свободный, так и связанный, путем подогрева раствора паром при добавлении извести. Затем его можно снова растворить в воде для получения аммиачной воды или абсорбировать серной кислотой для получения сульфата аммо- ия. Или же его можно подвергнуть дальнейшей очистке, сушке и сжатию и получить жидкий безводный аммиак, хотя эта последняя операция редко применяется на коксовальных установках. [c.28]

    Поскольку актиний трудно выделить из природных источников, исследователи давно пришли к выводу, что химические свойства актиния очень близки к химическим свойствам лантана и редкоземельных элементов. Актиний, как и редкоземельные элементы, образует не растворимые в воде фторид, гидроокись, оксалат, карбонат и фосфат. Физические свойства галогенидов актиния, насколько они изучены, очень похожи на свойства соответствующих галогенидов редких земель. Все те чистые соединения актиния, которые были приготовлены и охарактеризованы, изострук-турны с соответствующими соединениями лантана. Кристаллохимические исследования показали, что размеры иона Ас наибольшие из всех известных трехзарядных ионов радиус его равен 1,10 А. Ионный радиус лантана равен 1,06 А, небольшое различие ионных радиусов (0,04 А), наряду с тем фактом, что оба иона имеют аналогичную электронную структуру инертного газа, в равной мере обусловливает сходство химических свойств. Заключение о подобии актиния и редких земель подтверждается его поведением при соосаждении с носителями. Из табл. 2.2 очевидно, что химические свойства Ас , о которых можно судить на основании наблюдаемого поведения при соосаждении с носителями, действительно [c.19]

    Осаждение цинком является быстрым методом выделения золота, палладия, платины, родия и рутения из растворов, содержащих неблагородные металлы, которые не осаждаются цинком. Выделение иридия, особенно из сернокислых растворов, редко бывает полным, но оно протекает количественно при добавлении чистого магния. Слабокислый солянокислый раствор обрабатывают химически чистой цинковой пылью при осторожном помешивании до восстановления железа и почти полной нейтрализации кислоты, затем добавляют еще 1 г цинка, нагревают осторожно до начала кипения, энергично смешивая цинк с обрабатываемым раствором. Добавление небольших количеств порошкообразного магния на этой стадии способствует полному осаждению иридии. После охлаждения ниже 60° медленно добавляют соляную кислоту до растворения избытка цинка и прекращения выделения газа. Отстоя1Ш1уюся жидкость декантируют через неплотный фильтр, осадок промывают три-четыре раза декантацией, затем смывают его на фильтр и тщательно промывают горячей водой до удаления хлоридов небольшие количества меди из влажного осадка извлекают следующим способом смывают осадок обратно в стакг н и перемешивают его па холоду в течение нескольких минут с 0 мл 20%-ного раствора сульфата железа в Ю Уо-пой серной кислоте при этом растворяются следы цинка и медь переходит в растворимый сульфат золото и платиновые металлы остаются без изменения. Затем черный осадок платиновых металлов тщательно промывают на том же фильтре теплой 5%-ной серной кислотой до удаления солей железа и меди и, наконец, горячей водой отмывают кислоту. Осажденные опи-са шым методом родий, иридий и рутений количественно не растворяются в царской водке, поэтому дальнейшей аналитической работе с этими металлами должно предшествовать сплавление их со свинцом— (см. разд. VH, Д). [c.381]


Смотреть страницы где упоминается термин Редкие газы растворимость в воде: [c.298]    [c.125]    [c.64]    [c.396]    [c.164]    [c.60]    [c.164]   
Анализ газов в химической промышленности (1954) -- [ c.320 ]




ПОИСК





Смотрите так же термины и статьи:

Газы растворимость

Растворимость в воде

Растворимость газов



© 2025 chem21.info Реклама на сайте