Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иридий в кислотах

    Азотная кислота действует почти на все металлы (за исклю-ением золота, платины, тантала, родия, иридия), превращая их нитраты, а некоторые металлы — в оксиды. [c.413]

    Иридии отличается от платины очень высокой температурой плавления и ен е большей стойкостью к различным химическим воздействиям. На иридий не действуют ин отдельные кислоты, ин царская водка. Кроме того, иридий значительно превосходит платину своей твердостью. [c.700]


    Только платина и иридий вполне стойки к действию азотной и концентрированной серной кислот, остальные платиновые металлы медленно с ними реагируют (в виде порошка быстрее). Все плати новые металлы при нагревании реагируют с хлором. Жидкий бром медленно взаимодействует с платиной уже при комнатной темпе ратуре. При нагревании платиновые металлы реагируют с серой, фосфором, кремнием и другими элементными веществами. [c.575]

    Азотная кислота корродирует и растворяет все металлы кроме золота, платины, титана, тантала, родия и иридия, однако в концентрированном виде пассивирует железо и его сплавы. [c.209]

    Платина (IV) экстрагируется диалкилсульфидами намного слабее палладия (II). При экстракции индикаторных количеств Pt (IV) из 0,6 М соляной кислоты 0,5 М раствором ДОС в бензоле коэффициент распределения платины равен 0,5 нри повышении концентрации кислоты он несколько снижается. Иридий (IV) и иридий (III) экстрагируются крайне слабо (коэффициент распределения 2 10 ). [c.183]

    Сульфиды проявляют свойства высокоэффективных экстрагентов серебра, золота, платины, палладия, родия, рутения, иридия и других тяжелых металлов. В 1967-78 гг. в ряде работ [13-17] показана возможность использования нефтяных сульфидов для экстракции ионов металлов А (I), Рс1 (И), Р1 (II), Аи (III) из растворов соляной и азотной кислот. Впервые выявлена эффективность концентрирования высокотемпературной экстракцией суммы платиноидов (Гг, Ки, Ко) [13]. В последние годы предложено использовать нефтяные сульфиды для концентрирования золота из отработанных золотосодержащих руд. Перспективность применения нефтяных концентратов в металлургии и проявляемый значительный интерес к ним связаны с тем, что взаимодействие сульфидов с соединениями благородных ме- [c.228]

    Если четырехвалентные соединения палладия и иридия не были полностью восстановлены, то щавелевой кислотой они будут восстановлены  [c.255]

    Рутений, родий, осмий и иридий тугоплавки. Несмотря на малую доступность и дороговизну, эти металлы, наряду с платиной, имеют разностороннее, год от года возрастающее техническое применение. Платиновые металлы малоактивны и весьма стойки к химическим воздействиям. Большинство из них не растворяются не только Б кислотах, но и в царской водке. [c.530]

    БЛАГОРОДНЫЕ МЕТАЛЛЫ — золото, серебро и металлы платиновой группы (рутений, родий, палладий, осмий, иридий, платина). Б. м. стойкие против коррозии, тугоплавкие, плохо растворяются в кислотах, характеризуются ковкостью и тягучестью, имеют привлекательный внешний вид. Б. м. широко применяют в технике, ювелирном деле, лабораторной практике. [c.45]


    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    Комплексным кислотам родия (III) и иридия (III) [c.408]

    Широкое применение платиновые металлы и сплавы нашли как коррозионно-стойкие материалы. Добавка 10% иридия к платине повышает ее химическую стойкость и твердость втрое. Такие сплавы обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах, в них выращивают кристаллы для лазерной техники. Эти сплавы применяют также для изготовления хирургических инструментов и эталонов. Малые добавки иридия к титану и хрому резко повышают стойкость их к действию кислот. [c.410]

    Как платиновые металлы — платина, рутений, родий, палладий, осмий и иридий — относятся к воде, кислороду, кислотам и щелочам Написать уравнения возможных реакций. [c.253]

    Большое перенапряжение водорода на ртути позволяет работать в широком диапазоне потенциалов и выделять большое число металлов, образующих амальгамы. Схема ячейки для электролиза на ртутном катоде приведена на рис. 29. Без регулирования потенциала рабочего электрода в 0,1 н. серной кислоте осаждаются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром, молибден, свинец, висмут, селен, теллур, ртуть, золото, платина, иридий, родий и палладий. Плохо осаждаются марганец, рутений, мышьяк и сурьма. Полностью остаются в рас- [c.59]

    Родий и иридий в компактном состоянии не реагируют с кислотами, в том числе и с царской водкой. В виде тонких порошков (чернь) эти металлы реагируют с царской водкой. [c.144]

    Среди применяемых катализаторов отметим кислоты Льюиса [753] и фосфиновые комплексы никеля [754]. Некоторые реакции раскрытия циклобутановых колец тоже можно провести каталитически (т. 4, реакция 18-42). Роль катализатора не вполне ясна н может быть различной в разных случаях. Одна из возможностей заключается в том, что в присутствии катализатора запрещенная реакция становится разрещенной из-за координации катализатора с л- или а-связями субстрата, [755]. В таком случае, конечно, реакция будет идти как согласованный [2з + 2е]-процесс. Однако имеющиеся данные, по крайней мере для больщинства случаев, более соответствуют несогласованным механизмам, включающим образование интермедиатов, содержащих о-связь металл — углерод [756]. К примеру, такой интермедиат был выделен при катализируемой комплексами иридия димеризации норборнадиена [757]. [c.262]

    Все галиды кобальта, родия и иридия образуются взаимодействием соответствующих оксидов или гидроксидов с галогеноводородными кислотами. Кроме того, они могут быть, за немногими исключениями, получены при нагревании чистых металлов в атмосфере галогена. [c.373]

    Обладая положительными значениями стандартных электродных потенциалов, благородные металлы с водой и неокисляюиди-мн кислотами ые взаимодействуют. Азотная кислота окисляет все благородные металлы, кроме платины и золота интенсивность действия азотной кислоты зависит от степени раздробленности металлов. Так же действуют и другие окисляющие кислоты. На все благородные металлы действуют смесь азотной кислоты с ила-викопой (HF), а также смесь азотпой кислоты с соляной кисло-1 ой — царская водка, — которая окисляет все благородные металлы, кроме компактных осмия, родия и иридия. Платиновые металлы реагируют ири сплавлении со щелочами в присутствии окислителей. [c.326]

    Адсорбция из раствора [157, 158]. Катализаторы сорбционного типа готовят пропиткой гранул оксида алюминия, предварительно насыщенных или пе насыщенных растворителем. Для нанесения латипы, иридия и рения обычно используют растворы соответству-. щих кислот Н.,Р1С в, Н.ЛгС , HRe04. Закрепление платины па носителе осуществляют путем ионного обмена  [c.76]

    Не подворгаются действию ННОз только золото, платина, родий, рутений, иридий и тантал. Концентрированная кислота пассивирует алюминий, железо и хром из-за образования нерастворимых пленок оксидов  [c.123]

    Изучена экстракция индикаторных количеств ряда халькофильных металлов ди-к-октилсульфоксидом (ДОСО) из соляно- и азотнокислотных растворов. Золото (III) экстрагируется 0,4 Ж бензольным раствором ДОСО na солянокислотных растворов в интервале концентрации НС1 от 0,1 до 6 М так же эффективно, как и ди-к-октил-сульфидом. Коэффициент распределения золота близок к — 100 независимо от кислотности водной фазы. Палладий (II) экстрагируется ДОСО в этих условиях лишь немного слабее, чем сульфидом коэффициент распределения палладия (II) независимо от концентрации кислоты, близок к 20. Платина (IV) заметно экстрагируется ДОСО лишь из сильнокислотных растворов при возрастании r j от 1,9 до 5,7 М коэффициент распределения платины увеличивается с 2,6 -10 до 3,2. Аналогичная зависимость эффективности экстракции от кислотности водной фазы наблюдается и для более слабо экстрагирующихся иридия (III) и иридия (IV). [c.193]


    В ранней литературе по катализу имеется много указаний на повышение активности катализаторов от различных добавок. Так, отмечено было повышение активности иридия следами осмия, повышение обесцвечивающей силы угля от добавок солей имеется также указание, что достаточно загрязнить золото одной пылинкой платины, чтобы оно раскалилось в токе водорода установлено повышение активности Си504 (при получении хлора из НС1) примесями Ма2804 или Кз504. Оказалось, что окисление нафталина концентрированной серной кислотой сильно ускоряется от прибавления Н , Зе или НзВОд. Очень изящным опытом является ускорение окисления анилина бертолетовой солью при добавлении меди. Добавление 0,5% СеОа к никелевому катализатору повышает скорость реакции в 10 раз, хотя в катализаторе на ИЗО атомов N1 приходится лишь 1 молекула СеОа. Разложение НоОз в присутствии солей закиси железа резко ускоряется от добавки 1 миллимоля медной соли на 1. ] реагента. В биохимических процессах роль активаторов играют ко-ферменты. [c.62]

    Под влиянием катализаторов (родий, рутений, иридий) муравьиная кислота уже при комна1ной температуре распадается на водород и углекислый газ  [c.248]

    В настоящей работе с целью синтеза водорастворимых фуллереновых комплексов Pt-металлов нами исследованы реакции взаимодействия ацетилацетонатов платиныП и иридияШ с фуллереном С60, фуллереновой сажей (Ф/С) и фуллереновой сажей, допированной платиной и иридием (М-Ф/С) непосредственно в процессе синтеза фуллеренов. Реакции проводили в водноорганических растворах и нагреванием твердофазных смесей реагентов, с последующей обработкой продуктов термических реакций минеральными кислотами. Водорастворимые продукты синтеза исследованы методами, ИК-,УФ-, ЭПР-спектроскопии. Методами ТСХ и колоночной хроматографии проведено разделение смесей водорастворимых продуктов, образую1цихся при использовании Ф/С и М-Ф/С в качестве исходных реагентов в синтезе. [c.101]

    После выпаривания раствора с серной кислотой и обработки твердых солей в солянокислом растворе большая часть четырехвалентных соединений палладия и иридия восстановится до более хар актерных для них соединений НгРйСЦ и Нз1гС1б. [c.255]

    Палладий растворим в конц. НМОз. Остальные платиновые металлы, за исключением рутения, родия и иридия, могут быть растворены в царской водке . Окисление Ки, КЬ и 1г удается провести при повышенных температурах, например, при их нагревании с кислородсодержащей соляной кислотой. Важное значение имеет способность некоторых платиновых металлов, (платины и, особенно, палладия, см. опыт 2) растворять зкачи.-тельные количества водорода. [c.643]

    С, т. кип. 86° С. Смешивается с водой во всех отношениях. Азеотроп-ная смесь с водой содержит 68,4% НХОз и кипит при 121,9° С. Обычная 96—98%-ная НКОз — жидкость красно-бурого цвета. А. к. — сильный окислитель, реагирует почти со всеми металлами, образуя с ними соответствующие оксиды или соли — нитраты и выделяя оксиды азота. Устойчивы к действию А. к. золото, платина, родий, иридий и тантал. Такие металлы, как железо, хром, алюминий, пассивируются концентрированной А. к. за счет стойкости к действию А. к. оксидной пленки, образующейся на ее поверхности. Концентрированная А. к. окисляет серу до серной кислоты, фосфор — до фосфорной. Многие органические соединения под действием А. к. разрушаются и воспламеняются. Разбавленная А. к. более слабый окислитель, чем концентрированная продуктами восстановления ее сильными восстановителями могут быть гемиоксид азота, свободный азот н нитрат аммония. В лаборатории А. к. получают действием на ее соли концентрированной N3804 при нагревании. В промышленности разбавленную (45—55%) А. к. получа- [c.11]

    Рений служит заменителем иридия в платиновых сплавах (при изготовлении электродов, термопар). Прибавка рения к вольфраму делает нить накаливания в электролампах более долговечной. Сплавы W Не приобретают в технике большое значение как весьма стойкие против эрозии (изъявления металлов). Рений дает блестящие антикоррозионные покрытия (ренирование). Из железных листов, ренированных электролитическим путем, изготовляют цистерны и баки для перевозки соляной кислоты. [c.534]

    Родий и иридий — благородные химически- и коррознонностой-кие металлы. Кислоты (включая царскую водку) на них не действуют. [c.556]

    Способы получения. В лабораториях Os получают нагреванием диоксида осмия в атмосфере смеси водорода с двуокисью углерода в технике его получают, извлекая из остатков платиновых руд после растворения их в царской водке. Этот остаток, содержащий осмий, рутений и иридий, сплавляют с цинком, прокаливают с пероксидом бария и экстрагируют водой избыток бариевых солей. Осадок подвергают перегонке с водяным паром. Осмий собирается в приемнике в виде осмиевой кислоты H2OSO4, из которой получают металлический осмий прокаливанием ее в графитовом тигле. [c.366]

    Иридий химически устойчив не менее, чем родий. На него не действуют ни кислоты, ни царская водка, ни кислород воздуха при обычных условиях. Однако содержащая кислород соляная кислота разъедает его при нагревании в запаянной толстостенной стеклянной трубке. Нагретый на воздухе или в струе кислорода до температуры красного каления, порошок иридия окисляется в диоксид гОз, который, однако, при более высокой температуре вновь разлагается с выделением чистого иридия. При краснокалильном жаре хлор переводит иридий в хлорид (П1) 1гС1з. [c.370]

    Оксиды всех элементов этой подгруппы не растворимы в воде. Оксиды двух- и трехвалентного кобальта растворяются в кислотах, давая соответствующие соли, т. е. обладают основными свойствами оксиды же родия и иридия в кислотах не растворимы (кроме соляной кислоты, в которой 1гО, растворяется с образованием иридиевохлористоводородной кислоты) они не растворимы также и в щелочах. [c.371]

    Из всех оксидов элементов этой подгруппы только диоксид иридия, растворяясь в соляной кислоте, образует гексахлоро- (IV) иридиевую кислоту, содержащую комплексный анион [1гС1б] , [c.371]

    Способы получения. Фтор в свободном состоянии был впервые получен Муассаном в 1886 г. электролизом раствора гидрофгорида калия КНР в плавиковой кислоте. Муассан производил свои опыты в платиновой и-образной трубке с электродами из сплава платины с иридием. [c.595]


Библиография для Иридий в кислотах: [c.152]   
Смотреть страницы где упоминается термин Иридий в кислотах: [c.603]    [c.641]    [c.254]    [c.31]    [c.105]    [c.131]    [c.556]    [c.365]    [c.373]   
Методы разложения в аналитической химии (1984) -- [ c.194 , c.220 , c.386 ]




ПОИСК





Смотрите так же термины и статьи:

Азотная кислота, действие на алюминий и его сплавы железо золото индий иридий

Бромистоводородная кислота, действие на алюминий золото иридий

Бромистоводородная кислота, действие на алюминий золото иридий осмий палладий

Иодистоводородная кислота, действие на золото иридий

Иридий

Иридий аскорбиновой кислотой

Иридий как катализатор хлорсульфоновых кислот

Иридий определение аскорбиновой кислотой

Иридий смесью кислот

Иридий, определение соляной кислотой

Иридий-191 и иридий

Нитробарбитуровая кислота, определение калия определение иридия

Плавиковая кислота, действие золото иридий

Плавиковая кислота, действие золото иридий магний и его сплавь

Соляная кислота, действие иридий

Фосфорная кислота, действие алюминий и его сплавы золото иридий

Элементы, сульфиды которых нерастворимы в кислотах, но растворимы в растворах сульфидов щелочных металлов Мышьяк, сурьма, олово, германий, молибден, селен, теллур (и полностью или частично золото, платина и иридий) Мышьяк

Этилендиаминтетрауксусная кислота иридия

Этилендиаминтетрауксусная кислота определение иридия

кол и новая п иридии карбоновая кислота



© 2025 chem21.info Реклама на сайте