Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тантал экстракционно-фотометрическое

    Из всех изученных трифенилметановых красителей бриллиантовый зеленый обеспечивает наиболее высокую чувствительность экстракционно-фотометрического определения тантала. Бриллиантовый зеленый имеет [c.153]

    Экстракционно-фотометрическое определение тантала в рудах и тетрахлориде титана [c.162]

    Для тантала хорошо изучены экстракционно-фотометрические реакции, основанные на взаимодействии его анионных комплексов с окрашенными органическими основаниями и экстракции образовавшегося комплекса органическим растворителем. По данным работ [185—187], по ряду показателей лучшим является реактив бриллиантовый зеленый. Находят аналитическое применение смешанные комплексы тантала с несколькими реагентами [188]. [c.136]


    ЭКСТРАКЦИОННО-ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ТАНТАЛА С БРИЛЛИАНТОВЫМ ЗЕЛЕНЫМ [c.180]

    В результате проведенных исследований были выбраны условия для экстракционно-фотометрического определения тантала концентрация плавиковой кислоты в водной фазе 0,5-м., серной кислоты 0,8-м., оксалата аммония 0,2-м., начальная концентрация бриллиантового зеленого 2,2-10 3-м. В этих условиях Ti, Nb, W и V не мешают определению тантала. Бор и нитрат-ион дают такую же окраску, как и тантал. Для устранения влияния бора пробу перед оплавлением следует обрабатывать плавиковой кислотой и выпаривать с серной. Присутствие хлор-иона в растворе нежелательно, так как хлориды некоторых металлов с бриллиантовым зеленым могут экстрагироваться бензолом [7]. Изменение концентрации оксалат-иона практически не влияет на оптическую плотность комплекса тантала. [c.183]

    ЭКСТРАКЦИОННО-ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ МИКРОКОЛИЧЕСТВ ТАНТАЛА В ГОРНЫХ ПОРОДАХ [c.179]

    Лауэр и Полуэктовым разработаны экстракционно-фотометрические методы определения примеси тантала в металлах цирконии, гафнии и ниобии, [c.491]

    ЭКСТРАКЦИОННО-ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ПРИМЕСИ ТАНТАЛА В МЕТАЛЛИЧЕСКИХ ЦИРКОНИИ, [c.522]

    Для отделения л концентрирования примесей в анализе титана, ниобия и в меньшей мере тантала используется экстракция примеси и экстракция основы. Экстракция единичных примесей применялась главным образом при фотометрическом определении [17, 20—22]. Групповая экстракция оказалась очень эффективной при спектральном анализе. Например, последовательная экстракция групповыми реактивами при разных значениях рН среды дает возможность одновременно определять 26 элементов-примесей в титане с достаточно высокой чувствительностью [10]. К сожалению, применительно к анализу ниобия и в особенности тантала последовательная групповая экстракция малоэффективна из-за легкой гидролизуемости их соединений. Экстракционное выделение примесей осложняется также особенностями способов переведения ниобия и тантала в раствор (обработка плавиковой и азотной кислотами или сжигание до пяти-окисей и последующее сплавление со щелочами). [c.90]

    Особенно большое значение имеют фотометрические методы определения ниобия [399—405] и тантала [400, 406], в которых комплексон повышает избирательность определений, а также экстракционно-спектрофотометрические определения Nb в присутствии Sr [407, 408] и Mg [409]. [c.302]


    Пирокатехин применяется также при экстракционном разделении и последующем фотометрическом определении ниобия, тантала и титана . [c.192]

    Применение разнолигандных комплексов во многих случаях приводит к повышению селективности, контрастности реакций, улучшению экстракционных и других свойств. Приведем несколько примеров. Определение малых количеств тантала в присутствии больших количеств ниобия — очень трудная задача. Однако эта задача была успешно решена с применением экстракционно-фотометрического метода определения тантала в виде ионных ассоцнатов гекса фторид ноге комплекса тантала с основными красителями. Аналогичную трудность испытывали аналитики при определении малых количеств рения в присутствии больших количеств молибдена. Только применение экстракции с трифенилметановыми красителями дало возможность определять очень малые количества рения в молибдене или молибденовых рудах с довольно низким пределом обнаружения. Это же относится к определению осмия в присутствии других платиновых металлов, определению бора и других элементов. Введение второго реагента часто приводит к улучшению экстракционных свойств комплексов и снижению предела обнаружения. Так, дитизонат никеля очень плохо экстрагируется неводными растворителями. Для полной его экстракции тетрахлоридом углерода требуется примерно 24 ч. Если же ввести третий компонент — 1,10-фенантролин или 2,2 -дипиридил, то комплекс экстрагируется очень быстро, а предел обнаружения никеля снижается в пять раз. [c.299]

    Сплавы рения, тантала и ниобия. Тапталсодержащие сплавы растворяют в смеси HF и HNOg. Азотную кислоту удаляют выпариванием досуха с соляной кислотой. Далее после отделения осадка Та205-а Н20 рений определяют фотометрически с диметилглиоксимом [569, 116]. Рений после его отделения от ниобия и тантала па анионите дауэкс-1 определяют также роданидным экстракционно-фотометрическим методом [937]. [c.257]

    К родаминовым (ксантеновым) красителям относятся родамин 6Ж, бутилродамин С, родамин С, родамин ЗБ. Соединения родаминовых красителей с фтор-танталатом используют для экстракционно-фотометрических (абсорбционнометрических) и экстракционно-флуори-метрических методов. Последние являются более чувствительными, например нижний предел определения тантала с бутилродамином С экстракционно-фотометрическим методом равен 2 мкг/5 мл, а экстракционно-флуориметрпче-ским с тем же реагентом 0,002 мкг/5 мл. [c.154]

    В тех случаях, когда прямой экстракционно-фотометрический метод неприменим, для анализа следов могут приобрести особое значение фотометрические методы с экстракцией определяемого элемента в виде бесцветного соединения, которое затем, непосредственно в экстракте, добавлением реактива переводится в окрашенное. Таким путем, например, можно определять фенилфлуо-роном германий [4] или ниобий в присутствии тантала [5] после [c.3]

    Особенностью реагентов и образуемых ими комплексов с элементами является их сравнительно легкая экстрагируемость полярными растворителями, благодаря чему они пригодны для экстракционно-фотометрических схем определения элементов. С пиридилазорезорцином [43—46] описаны методы определения ниобия [35, 47], тантала [35, 36], кобальта [48], палладия [49. Пиридилазонафтол [50] применяется для определения отдельных редкоземельных элементов [51], индия, галлия, урана и ряда других элементов [52]. Есть очень обстоятельный обзор по аналитическому применению пиридиновых азосоединений [53]. [c.128]

    Экстракционно-фотометрические методы определения тантала с метиловым фиолетовым и кристаллическим фиолетовым [1—3], малахитовым зеленым [4], родамином 6Ж и бутилродамином [5] позволяют определять малые содержания тантала е различных объектах без предварительного отделения многих примесей. Мы исследовали реакцию взаимодействия фтортанталата с основным красителем трифенилметанового ряда—бриллиантовым зеленым. [c.180]

    Извлечение металлгалогенидных комплексов органическими растворителями нашло широкое и разнообразное применение в аналитической химии, радиохимии, гидрометаллургии, при очистке полупроводниковых веществ. Экстракцию соединений металлов с галогенид-ионами используют для разделения малых количеств определяемых элементов, для аналитического концентрирования, получения материалов высокой чистоты. Вольшое значение имеют многочисленные экстракционно-фотометрические аналитические методы, основанные на использовании галогенидов и особенно роданидов, а также радиохимические способы выделения радиоизотопов, в частности изотопов без носителя. Экстракция галогенидных и роданидных комплексов применяется в промышленности для разделения циркония и гафния, ниобия и тантала, для выделения галлия и теллура. Использование экстракции металлгалогенид-ных комплексов в гидрометаллургии будет в ближайшие годы значительно расширяться. [c.295]


    Способы выполнения и химизм этих цветных реакций давно описаны как для реакций безэкстракционного варианта (цветные твердофазные реакции [6]), так и для реакций экстракционного варианта [3], В последнее время на основе соответствующих цветных твердофазных реакций было описано много экстракционно-фотометрических методов определения различных элементов. Описаны, например, методы определения сурьмы, таллия, галлия, индия, рения, вольфрама, ртути, тантала, бора и многие др. [30]. Прием иллюстрируется схемой 4. [c.20]

    Экстракционно-фотометрические методы анализа, разработанные автором, получили широкое применение при определении малых содержаний тантала, индия, таллия, бора и других элементов. Предложенная работа является первой попыткой обобщения экспериментального материала по этим методам. В ней дана характеристика различных форм красителей-реагентов, рассмотрены раг-иовесия в экстракционных системах, исследованы факторы, лимитирующие чувствительность и точность анализа. Даны критерии для выбора оптимальных условий применения реагентов и указаны пути повышения чувствительности и точности. В работе описаны реакции 23 элементов с основными красителями приведены прописи определения 10 элементов в рудах и горных пор(.-дах. [c.4]

    Экстракционно-фотометрический метод Полуэктова с сотрудниками основан на экстракции метилвиолетового комплекса тантала из фтористоводородной среды бензолом [49]. [c.489]

    Экстракция купфероната циркония хлороформом. Такие элементы, как алюминий, магний, бериллий, цинк и другие, нельзя определить фотометрическими методами без отделения Циркония, так как большинство применяемых реагентов либо образует окрашенные соединения и с цирконием, либо максимум оптической плотности с этими реагентами достигается в слабокислой или слабощелочной среде, когда цирконий подвергается гидролизу и осаждается. Наиболее целесообразно разделять эти элементы экстракцией купфероната циркония хлороформом. При этом вместе с цирконием экстрагируются железо, титан, ванадий, ниобий, тантал и др. Купферонат циркония относили к плохо экстрагируемым в хлороформе элементам [645]. Такие элементы, как тантал, ниобий, цирконий и другие, легко осаждающиеся купфероном в кислой среде, нелегко растворяются в органических растворителях [466], а цирконий умеренно растворяется в этилацетате. Основанием для таких выводов могло служить то обстоятельство, что при экстракции купфероната циркония хлороформом расслаивание фаз происходит медленно, а на границе раздела органической и водной фаз, за счет продуктов разложения купфероната в кислой среде, образуются белесые пленки, препятствующие четкому разграничению фаз. Для нахождения оптимальных условий экстракционного разделения циркония и других элементов Елинсон, Победина и Мирзоян [100] изучали распределение циркония между водным сернокислым раствором и хлороформом в присутствии купферона и показали, что наиболее полное отделение циркония достигается в том случае, если сернокислый (1 Л/) водный раствор купферона предварительно экстрагируется хлороформом, а экстракция циркония производится хлоро4юрмным раствором купферона. При этом быстрее достигается расслаивание органической и водной фаз, а на границе раздела фаз не появляются твердые пленки. Кроме того, при таком способе экстракции в хлороформ переходит чистый нитрозофенилгидроксиламин, а продукты разложения купферона, [c.85]

    В то время как для фотометрического определения ниобия в присутствии тантала известны селективные реагенты (бромпирогаллоловый красный, пиридилазорезорцин), для определения тантала в присутствии ниобия селективных реагентов нет. Поэтому в большинстве случаев необходимо предварительное отделение тантала от ниобия. Практически удобны только экстракционные методы. В зависимости от соотношения концентраций экстрагируют ниобий из раствора, содержащего Та, или селективно экстрагируют тантал. В том и другом случае для фотометрического определения тантала используют те же реагенты, что и для определения ниобия. [c.394]


Библиография для Тантал экстракционно-фотометрическое: [c.41]   
Смотреть страницы где упоминается термин Тантал экстракционно-фотометрическое: [c.130]    [c.315]    [c.261]    [c.179]   
Практическое руководство по аналитической химии редких элементов (1966) -- [ c.208 ]




ПОИСК





Смотрите так же термины и статьи:

Назаренко, М. Б. Шустова ЭКСТРАКЦИОННО-ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ МИКРОКОЛИЧЕСТВ ТАНТАЛА В ГОРНЫХ ПОРОДАХ

Невзоров и Л. А. Бычков — Экстракционно-фотометрическое определение тантала с бриллиантовым зеленым

Тантал

Тантал экстракционное

Экстракционно-фотометрическое определение примеси тантала в металлических цирконии, гафнии и ниобии

Экстракционно-фотометрическое определение тантала в техническом ниобии



© 2025 chem21.info Реклама на сайте