Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа скорости реакции по теории переходного состояни

    Теория абсолютных скоростей реакции, или метод активированного комплекса, позволяет рассчитать скорость реакции, если известны некоторые параметры, характеризующие потенциальную поверхность. Скорость химической реакции равна скорости перехода активного комплекса через потенциальный барьер. Основным уравнением теории активированного комплекса является уравнение, связывающее константу скорости реакции со свойствами переходного состояния  [c.299]


    Факторы, определяющие константу скорости реакции. Энергия активации. Теория столкновений. Активированные комплексы. Поверхности потенциальной энергии, путь реакции. Теория абсолютных скоростей реакций, переходное состояние, энтальпия и энтропия активации. Реакции замещения, нуклеофильные группы, механизм 814) 1 (диссоциативный), механизм SN2 (ассоциативный). [c.350]

    Оценка предэкспоненциального множителя в уравнении Аррениуса по энтропии активации. Предэкспоненциальный множитель А можно оценить исходя из теории переходного состояния, не принимая каких-либо допущений о структуре переходного состояния. Для примера рассмотрим реакцию взаимодействия На с 2 с образованием Н1 в газовой фазе. Константу скорости бимолекулярной реакции можно выразить через энтропию процесса образования переходного состояния А5я и энергию активации Е . [c.581]

    Итак, мы ознакомились с основными положениями теории переходного состояния, с возможностями оценки на базе этой теории предэкспоненциального множителя в уравнении Аррениуса. Для вычисления энергии активации надо рассчитывать поверхность потенциальной энергии элементарного химического акта. Задача эта сложная и решается только для простейших реакций. Для отдельных типов реакций предложены приближенные методы расчета энергии активации. Широко применяются для оценки констант скоростей реакций корреляционные методы. [c.588]

    Сопоставление формул (30) и (П, 12) показывает, что в случае простейших бимолекулярных реакций теория переходного состояния приводит к тем же результатам, что и теория бинарных столкновений. Для подобных реакций стерический фактор Р равен единице, а константа скорости реакции равна [c.63]

    Из изложенного вытекают пути расчетов абсолютных скоростей реакций методом переходного состояния. Эти расчеты сводятся к вычислению величин предэкспоненциальных множителей константы скорости соответствующей элементарной реакции. Так как форма кинетического уравнения элементарной реакции задается законом действующих масс, то при наличии значения энергии активации такой расчет и позволяет вычислить скорость этой реакции (потому его называют расчетом абсолютной скорости реакции). Величины энергии активации в принципе доступны квантовохимической оценке, и подобные расчеты могут рассматриваться как другая сторона приложения теории абсолютных скоростей реакций. [c.69]


    Оценить влияние солей и растворителей на эту реакцию можно исходя из этих двух механизмов путем раздельного рассмотрения эффектов на исходные соединения, на равновесия двух ионизационных стадий и на каждую кинетическую стадию. Было сделано много попыток различить эти два механизма путем исследования влияния солей и растворителей на наблюдаемую скорость [25]. Однако теория переходного состояния дает возможность сделать прямое заключение, что влияния солей и растворителей будет одинаковым для этих двух механизмов и выявление этих эффектов не может обеспечить способ для выбора механизма. В обоих случаях исходные соединения заряжены и любое разумное переходное состояние для каждого механизма [например, (82)] будет иметь тот же заряд или, более вероятно, меньший заряд, чем исходные соединения. Таким образом, добавление соли, по всей вероятности, будет стабилизировать (уменьшать коэффициент активности) исходные соединения болыпе, чем переходное состояние, что даст уменьшение скорости для любого механизма. Этот эффект наблюдается экспериментально. Добавление большинства органических растворителей будет дестабилизировать (увеличивать коэффициент активности) исходные соединения по сравнению с переходным состоянием и приведет к увеличению скорости, что также наблюдается экспериментально. Использование представления о переходном состоянии позволяет игнорировать все стадии между исходными соединениями и переходным состоянием. Вместо того чтобы обсуждать влияние изменений в условиях реакции на каждое равновесие и кинетическую стадию и затем пытаться суммировать их, чтобы предсказать эффект па общую скорость, достаточно обсудить только влияние на преобладающие ионные формы реагентов, относительно которых выражается наблюдаемая константа скорости, и на переходное состояние. [c.446]

    В теории переходного состояния к, — частота колебания или даже средняя частота колебания (см. разд. ХП.5), и с хорошей степенью приближения можно ожидать, что взаимодействие с растворителем не сильно влияет на ее величину, так что к,. 8) kr g). Различие в скоростях реакции, таким образом, сводится к различию термодинамических констант равновесия для двух фаз [c.432]

    Неоднократно устанавливалось влияние высоких давлений на скорость реакций в конденсированных системах. Это влияние наблюдалось в случае реакций в жидкой фазе, например полимеризации этилена, стирола и т. д. Для некоторых реакций в жидкостях можно предвидеть влияние давления на константу скорости реакции, основываясь на теории переходного состояния  [c.235]

    Реакции активации и химического превращения обычно характеризуются зн ачительными энергиями активации. Теоретическая оценка констант скоростей этих процессов может быть сделана по теории переходного состояния. Процессы дезактивации протекают с энергией активации, близкой к нулю. Константы скоростей реакций дезактивации определяются числом столкновений молекул. [c.591]

    В заключение раздела рассмотрим применение теории переходного состояния к расчету констант скорости некоторых реакций тримолекулярной рекомбинации атомов I и Вг с участием инертных газов. Поскольку эти реакции были хорошо изучены экспериментально в довольно широкой области температур, можно провести сопоставление результатов расчета [204] с опытными данными. Общим моментом для последующих расчетов является гипотеза о треугольной (равносторонней) конфигурации активированного комплекса АгМ. Основная формула (2.5) в данном случае примет вид  [c.120]

    Основное уравнение для константы скорости реакции в теории переходного состояния [c.290]

    Согласно теории активированного комплекса (переходного состояния) константу скорости реакции определяют по уравнению Эйринга (для бимолекулярных реакций) [c.398]

    Изложенное выще показывает, что теория переходного состояния в отличие от теории столкновений позволяет в принципе вычислить величину предэкспоненциального множителя в уравнении для константы скорости. Поэтому эту теорию часто называют теорией абсолютных скоростей реакций. [c.340]

    Таким образом, теория переходного состояния показывает, что предэкспоненциальный множитель в выражении для константы скорости мономолекулярных реакций (при высоких температурах) имеет смысл частоты колебания по линии разрываемой связи. [c.342]

    Основное уравнение теории переходного состояния. Уравнение для расчета константы скорости реакции выведем, рассмотрев бимолекулярную реакцию [c.246]

    В теории переходного состояния считается, что исходные вещества и активированный комплекс находятся в равновесии с константой равновесия, обозначаемой К" ". Согласно этой теории, все активированные комплексы превращаются в продукт с одинаковой скоростью (хотя на первый взгляд это может показаться удивительным, на самом деле в этом нет ничего-странного, если учесть, что все активированные комплексы скатываются с горы ), так что константа скорости (разд. 6.14) реакции зависит только от положения равновесия между исходными веществами и активированным комплексом, т. е. от величины которая связана с величиной S.G уравнением [c.277]


    Согласно термодинамике и теории переходного состояния константы равновесия К и константы скорости реакции к связаны со свободными энергиями равновесия и активации соотношениями  [c.254]

    Для объяснения механизма взаимодействия частиц обычно используют две теоретические модели теорию эффективных столкновений и теорию переходного состояния. Чаще всего рассматривают механизм, предусматривающий соударения реагирующих молекул. Константа скорости является мерой частоты и эффективности соударений. На основании теории эффективных соударений для константы скорости химической реакции выведено уравнение [c.139]

    Подставляя эту величину К= = в уравнение (1), получим константу скорости реакции по теории переходного состояния  [c.147]

    В основу теории переходного состояния положено несколько допущений и невыполнение какого-либо из них может привести к изменению как выражения для константы скорости (111.12), так и самого кинетического уравнения элементарной реакции (111.11). [c.96]

    В теории переходного состояния не рассматривается процесс образования активированных комплексов. Вместо этого принимается, что их концентрация соответствует распределению Максвелла — Больцмана. Не рассматривается в этой теории и дальнейшая судьба реагирующей системы атомов после пересечения энергетического барьера. Считается, что такое пересечение автоматически приводит к образованию частиц продуктов элементарной реакции. Ша эти допущения также имеют свои границы применимости и за их пределами изменяется не только выражение для константы скорости, но и общий вид кинетического уравнения. [c.97]

    По теории переходного состояния константа скорости бимолекулярной реакции, как следует из основного уравнения (111.12), равна [c.110]

    Положение о независимом протекании элементарных реакции вытекает из выражения для константы скорости, полученного по теории переходного состояния. В это выражение входят только температура и параметры, характеризующие частицы реагентов и активированный комплекс, — масса, моменты инерции, частоты колебаний, нулевые энергии, коэффициенты активности. Все эти параметры не зависят от того, протекает ли одновременно в той же системе еще какой-либо химический процесс. [c.231]

    Кинетические характеристики элементарного акта (энтальпия и энтропия активации) определяются энергетикой и геометрией переходного состояния. Центральное место здесь занимает атом или группа атомов, которые образуют реакционный центр и подвергаются превращению. От того, какие атомы здесь участвуют, какие связи рвутся и образуются в элементарном акте, как происходит перегруппировка связей, зависят величины АН и А5. При замене в молекуле одного атома на его изотоп, например Н на О или на С, сохраняется природа атакуемого атома и меняются лишь масса молекулы и соответствующие химические связи. По теории переходного состояния можно оценить, в какой степени такая замена отразится на константе скорости реакции, и сделать выводы о структуре переходного состояния. Такое изменение константы скорости реакции как результат только изотопной замены атома в молекуле называется кинетическим изотопным эффектом (к. и. э.). Его количественной мерой является отношение констант. Например, при замене в молекуле КН водорода на дейтерий мерой к. и. э. является отношение Лн/ о- К. и. э. считается нормальным, если кц/к з > 1, обратным, если Лн/Лр < 1, и равным единице, если н = Различаются также первичный к. и. э., когда он возникает в результате замены на изотоп того атома, который входит в состав реакционного центра и подвергается структурному перемещению, и вторичный к. и. э., когда на константу скорости реакции влияет замена на изотоп атомов, не принимающих участия в элементарном акте. При изменении изотопного состава растворителя, например ОгО вместо Н2О, может возникнуть изотопный эффект по растворителю. [c.215]

    Согласно теории переходного состояния, влияние давления на константу скорости химической реакции описывается при постоянной температуре уравнением [c.214]

    При вычислении константы скорости = А о ехр(- акт I элементарных реакций с участием, например, органических молекул обычно используют теорию переходного состояния Для вычисления (энергии активации) и предэкспоненты KQ необходимо знать потенциальную энергию, геометрию, а также полный набор колебательных частот исходных реагентов и переходного состояния [c.320]

    К аналогичным выводам приходят при рассмотрении этого вопроса в рамках теории переходного состояния. Константа скорости бимолекулярной реакции в газовой фазе [c.214]

    Как и в кинетике химической, исследования зависимости скорости реакции от темп-ры в интервале, когда не наблюдается тепловой денатурации Ф., позволяют оценивать энергетич. характеристику процесса, важную для понимания механизма действия Ф. Трудность интерпретации экспериментальных данных зависимости стационарной скорости реакции от темп-ры связана с тем, что ферментативные реакции представляют сложные последовательные процессы. Если измеряемая скорость лимитируется к.-л. одной из последовательных реакций, нанр. если ею является максимальная скорость реакции, определяемая одноступенчатым распадом фермент-субстратного комплекса К=А+г[Е]о, то исследование зависимости V= Т) позволяет оценить энергию активации этой стадии реакции. При возможности измерения констант скорости отдельных стадий реакции при различных темп-рах могут быть оценены соответствующие величины энергии активации. Изучение зависимости константы субстрата (К ) от темп-ры позволяет оценивать термодинамич. константы образования ЕВ-комплекса (ДЯ, АР, А8). Применение теории абс. скоростей реакций (теории переходного состояния) при анализе кинетики нек-рых ферментативных реакций позволило оценить энтальпию, энтропию и свободную энергию активации. Общий вывод из относительно небольшого пока числа таких исследований состоит в том, что высокая каталитич. активность Ф. объясняется как существенным снижением энергии активации, так и значительным благоприятным изменехгнем энтропии системы в ходе реакции. [c.210]

    Из всех трех тримолекулярных реакций, представленных в табл. XII.9, только реакция N0 с Ог была изучена при и1ироком варьировании условий. Все три реакции, однако, имеют примерно одинаковые по величине иредэксио-ненциальные множители, отвечающие стерическому фактору около 10 . Гершинович и Эйринг Ц20] показали, что теория переходного состояния может привести к такой величине частотного фактора при разумном выборе молекулярных параметров для переходного KOMUjreK a. С другой стороны, любой из двух механизмов, включающих промежуточные комплексы (N0) или NO-Оз, приводит к удовлетворительному объяснению величины скорости реакции NO+Oa, в то время как для реакций N0 с I2 и Вга можно лишь предполагать образование комплексов N0 l2 и NO-Bra- В этих случаях для наблюдаемой константы скорости [см. уравнение (XII.15.5)] справедливо соотношение /Снабл == Ккг, где К есть константа равновесия образования промежуточного бимолекулярного комплекса, а к — бимолекулярная константа скорости последующей реакции этого комплекса. [c.274]

    Шварц и др. [118] при экстраполяции к бесконечному замедлителю получили значение kJk2= 0,04 ехр (4500/Л7 ). Эта величина, вероятно, отвечает константе скорости реакции тепловых частпц. Однако нет теоретических предпосылок для обоснования такого низкого отношения стерических факторов (0,04), полученного авторами. Наоборот, теория переходного состояния показывает, что отношение стерических факторов примерно равно единице. Если бы данные авторов были верны, то они говорили бы о том, что факторы частот для обратных реакций, т. е. I Из Н1 - - Н, I Н1 А- 1з- - Н, относились бы друг к другу как 1 200. Это было бы много меньше любого отношения, предсказанного теорией. [c.345]

    При подстановке этого выражения в основное уравнение теории переходного состояния (XVn.28) получается уравнение Бренстеда — Христиансена — Скэт-чарда, описывающее совместное влияние ионной силы и диэлектрической проницаемости среды на константу скорости бимолекулярной ионной реакции  [c.262]

    Связанные с этим уравнением идеи и представления обладают высокой степенью универсальности, так как всякую химическую реакцию (как гомогенную, так и гетерогенную) можно трактопать в рамках теории переходного состояния. Эта теория позволяет в отличие от теории соударений в принципе вычислить величину предэкспоненциального множителя в уравнении для константы скорости. Поэтоглу эту теорию нередко называют теорией абсолютных скоростей реакции. [c.265]

    Первой теорией абсолютных скоростей реакций, сохранившей значение и по настоящее время, была созданная Эйрингом н Поляни теория переходного состояния или, как ее часто называют, метод активированного комплекса . Эта теория обосновала закон действия масс для элементарных реакций, т. е. пропорциональность скорости реакций произведению концентраций участвующих в реакции частиц, и общий вид зависимости константы от температуры, а также позволила рассчитать для ряда реакций предэкспоненци-альные множители в хорошем согласии с экспериментальными данными. [c.88]

    Л/А — постоянная Авогадро, 6,02-10 кмоль ). Для влементар-ных реакций в газовой фазе с помощью этого уравнения можно вычислять абсолютные значения констант скорости. Для этого расчета необходимо знать статистические суммы исходных частиц и активированного комплекса и энергию активации реакции. Последняя может быть вычислена только в том случае, если известно уравнение поверхности потенциальной энергии. В настоящее время точность таких расчетов даже для простейших реакций невелика, в то время как зависимость константы скорости от энергии активации весьма значительна. Поэтому, с точки зрения расчетов, основное значение теории переходного состояния заключается в возможности вычисления предэкспоненциального множителя. Для этого необходимо вычислить статистические суммы гх, г, ,. .., г . [c.91]

    Для получения газообразного иона хлора действовали электронным лучом на I4 при малом давлении и с помощью магнитного и электрических полей удерживали l" от столкновений со стенками сосуда. Было найдено, что константа скорости этой реакции в газовой фазе в 10 раз больше, чем в ацетоне и в 10 раз больше, чем в воде. Такое сильное замедление реакции в воде обусловлено гидратацией ионов С1 . Перед элементарным актом реакции водяная оболочка вокруг реагентов должна быть разрушена и, следовательно, увеличивается энергия активации процесса. В ацетоне реакция протекает быстрее, чем в воде, благодаря меньшей степени сольватации реагентов. Подобное влияние растворителя на скорость реакции качественно может быть объяснено теорией переходного состояния. [c.452]


Смотреть страницы где упоминается термин Константа скорости реакции по теории переходного состояни: [c.392]    [c.431]    [c.576]    [c.593]    [c.576]    [c.593]    [c.754]    [c.22]    [c.259]   
Курс химической кинетики (1984) -- [ c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Константа по теории переходного состояни

Константа скорости

Константа скорости реакции

Константа теория

Реакция константа

Состояние переходное

Теория переходного состояния

Теория переходного состояния Теория

Теория реакций



© 2025 chem21.info Реклама на сайте