Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический синтез ДНК использование ПЦР для синтеза искусственных

    В последние годы широкое применение в народном хозяйстве и медицине находят различные аминокислоты. Особое значение они имеют для сбалансирования белкового питания. Некоторые пищевые и кормовые продукты не содержат в своем составе необходимых количеств незаменимых аминокислот, в частности лизина. К таким продуктам относятся пшеница, кукуруза, овес, рис и ряд других. Для ликвидации возможного дисбаланса аминокислоты используют в чистом виде или вводят в состав комбинированных кормов, выпускаемых промышленностью. Поэтому основной сферой применения аминокислот следует считать создание рационов, позволяющих понизить содержание растительных белков в кормах. Показано, что искусственные смеси аминокислот позволяют экономить расход естественных кормов. Кроме добавок к кормам сельскохозяйственных животных, аминокислоты используются в пищевой промышленности. Применяются они и при изготовлении ряда полимерных материалов, например синтетической кожи, некоторых специальных волокон, пленок для упаковки пищевых продуктов. Ряд аминокислот или их производных обладают пестицидным действием. Метионин и у-аминомасляная кислота широко применяются как лекарственные средства. Удельный вес применения аминокислот в различных отраслях хозяйства может быть продемонстрирован на примере Японии, где на долю пищевой промышленности приходится 65% всех производимых в стране аминокислот, на животноводство — 18, для медицинских целей — 15 и на прочие нужды — 2 %. Мировой уровень производства аминокислот достигает в настоящее время нескольких миллионов тонн в год. В наибольших количествах в мире вырабатываются L-глутаминовая кислота, L-лизин, DL-метионин, L-аспарагиновая кислота, глицин. Основными способами получения аминокислот являются следующие экстракция из белковых гидролизатов растительного сырья, химический синтез, микробиологический синтез растущими клетками, при использовании иммобилизованных микробных клеток или ферментов, выделенных из микроорганизмов. [c.338]


    Монокристаллические материалы составляют основу современной полупроводниковой и вычислительной техники, оптических квантовых генераторов, методов голографии. Искусственные монокристаллы получают различными способами из расплавов, рас-,1 . парообразной или твердой фазы. В первом твердотельном х /ооре, построенном в 1960 г., в качестве рабочего элемента использован монокристалл рубина. Рубин — это кристалл корунда (а-АЬОз), содержащий примеси ионов хрома, Сг+ . Присутствие ионов хрома придает кристаллам корунда красную окраску. В оптических квантовых генераторах (ОКГ) чаще всего применяют бледно-розовый рубин с содержанием хрома около 0,05%. При повышении количества хрома окраска становится уже ярко-красной, а в дальнейшем переходит в зеленую. Кристаллы рубина по своим физико-химическим свойствам в определенной степени уникальны и отвечают всем требованиям, предъявляемым к материалам для ОКГ. Они обладают высокой теплопроводностью, что позволяет избежать их саморазогрева во время работы, имеют высокую оптическую и механическую однородность, исключающую паразитное поглощение и рассеяние энергии, обладают высокой термической, механической и химической стойкостью. Монокристалл рубина для ОКГ должен быть длиной от 50 до 300 мм и диаметром 5—25 мм. Кристаллы такого размера получают синтетическим путем. Одним из наиболее распространенных методов синтеза монокристаллов рубина остается способ, предложенный в 1891 г. Вернейлем. Ультрадисперсный порошкообразный оксид алюминия, легированный оксидом хрома (1П), попадает в пламя кислородно-водородной горелки, где температура достигает 2000 °С, плавится и опускаете) на расплавленную верхнюю часть [c.158]

    В настоящее время, наряду с использованием газа для энергетических целей быстро развивается и использование газа для технологических нужд, в качестве сырья для химического синтеза синтетического аммиака, искусственного жидкого топлива и др. В этих случаях применяется водяной газ, состоящий в основном из окиси углерода и водорода с небольшой примесью инертных газов (ООо и N0) и метана. [c.277]

    Благодаря широкому использованию методов бурно развивающейся белковой химии в последние годы ряд пептидных гормонов получен в гомогенном состоянии, изучен их аминокислотный состав, выяснена первичная (а в случае белковых гормонов—вторичная, третичная и четвертичная) структура и некоторые из них приготовлены синтетическим путем. Более того, большие успехи, достигнутые в области химического синтеза пептидов, позволили искусственно получить множество пептидов, являющихся изомерами или аналогами натуральных пептидов. Изучение гормональной активности последних принесло исключительно важную информацию о взаимосвязи структуры пептидных гормонов с их функцией. Примеры этого будут приведены ниже. [c.448]


    Для решения вопросов перекристаллизации рудных материалов и синтеза искусственных минералов полезен оригинальный подход к процессам роста кристаллов, развивавшийся лауреатом Ленинской премии проф. А. А. Власовым. Как справедливо отмечал акад. Н. В. Белов, метрическая теория роста кристаллических структур А. А. Власова близка по своим выводам к теории реального кристаллообразования. К. А. Никифоров (Институт естественных наук Бурятского филиала СО АН СССР) показал возможность использования этого подхода в технологии химического обо- ащения. [c.133]

    Переработка газов с целью получения химических продуктов не ограничивается одним направлением. Ассортимент нетопливных веществ, которые могут быть получены из углеводородов, настолько велик, что можно с полным правом говорить о появлении, наряду с уже давно существующей углехимической промышленностью, новой нефтехимической промышленности, перспективы развития которой, в свете современных достижений науки в области химического синтеза, представляются практически безграничными. Эта молодая промышленность уже на существующем этапе ее развития охватывает огромное многообразие процессов, из которых наибольшее значение в настоящее время имеют 1) конверсия, пиролиз, окисление, хлорирование и другие превращения метана и его гомологов 2) нитрование, изомеризация и дегидрирование гомологов метана 3) процессы, основанные иа использовании олефинов (гидратация и хлорирование олефинов, получение окисей, гликолей и их многочисленных производных). На фиг. 26 эти направления отражены в общей схеме переработки природного и искусственного нефтяных газов. [c.276]

    Бобовые культуры занимают сравнительно небольшие площади, и посевы их в севооборотах нельзя расширять безгранично. Поэтому прогрессивное повышение урожаев сельскохозяйственных культур возможно лишь при сочетании культуры бобовых с полным использованием навоза, а также с широким применением минеральных азотных удобрений, получаемых путем искусственного синтеза из азота воздуха на химических заводах. Академик Д. Н. Прянишников подчеркивал, что только на основе комплексного использования связанного азота, получаемого путем биологического синтеза в природе, и химического синтеза, осуществляемого на заводах, может быть успешно решена азотная проблема в земледелии. [c.194]

    В настоящее время катализ имеет огромное практическое значение. На применении его основано около 70% всех химических производств. Из новых химических процессов 90% являются каталитическими. Катализаторами является громадное количество веществ, в образовании их участвуют почти все элементы периодической системы. В качестве примеров можно назвать каталитические технологические процессы, имеющие громадное значение в жизни всего человечества производство серной кислоты — хлеба химии , позволяющей получать, в частности, фосфорные удобрения синтез аммиака с использованием азота воздуха и синтез азотной кислоты, дающие колоссальный запас азотистых веществ, в том числе также удобрений разнообразные процессы органического синтеза, в том числе гидрогенизация жиров, синтез искусственного каучука, различных мономеров, каталитический крекинг углеводородов нефти, связанный с получением множества ценных химических продуктов осуществление разнообраз- [c.20]

    В результате расшифровки механизмов процесса можно будет изыскать возможности проведения эндотермических искусственных химических синтезов с использованием энергии солнечной радиации или же найти способы эффективного преобразования энергии солнечной радиации в промышленно ценную энергию, например электрическую или потенциальную химическую. [c.333]

    В современной химической промышленности широко применяются давления порядка десятков и сотен атмосфер, а в некоторых процессах — вьппе 1000 ат. В ряде стран, в том числе и в Советском Союзе, в промышленных масштабах осуществляется синтез искусственных алмазов при давлении около 100000 аг. Роль и возможности применения высокого давления в химии все возрастают по мере развития научной мысли в этой области, а также в результате использования новейших достижений в смежных областях наз ки и техники (разработка новых высокопрочных материалов, усовершенствование аппаратуры высокого давления и пр.). [c.4]

    В настоящем сборнике помещена в виде статей часть докладов из числа представленных совещанию по теоретическим и технологическим вопросам полукоксования твердого топлива, газификации, гидрогенизации, термического растворения, использования газов для целей химического синтеза, а также в качестве сырьевой базы производства искусственного жидкого топлива. [c.3]

    Логическим продолжением этой тенденции было бы промышленное использование древесины как химического сырья. Здесь напрашивается параллель с углем и нефтью, развитие которых шло в направлении от их использования в качестве горючих материалов к изготовлению простых вторичных веществ. В конце своего пути они превратились в важное химическое сырье, из которого путем разложения на составные части получают исходные продукты для последующего синтеза сложных материалов. Поскольку цены на нефть и впредь будут возрастать быстрее, чем на древесину, последняя окажется, пожалуй, наиболее дешевым сырьем. Не заключаются ли в этом предпосылки того, что ей предстоит пройти тот же путь, что и нефти Так, по оценкам экспертов США, около 95% производства пластмасс, эластомеров и синтетических волокон в стране (а в 1974 г. оно составило 18 млн. т) могло быть реализовано переработкой 60 млн. т древесины в промежуточные прод кты-этилен, бутадиен и фенол. Возникает вопрос, не слишком ли много древесины для этого потребуется Судите сами именно такое количество древесины на американских лесозаготовках в 1970 г. произведено в виде отходов. Если развитие пойдет в этом направлении, то в будущем древесина станет не только строительным материалом и поставщиком бумаги, но и приобретет значение как химическое сырье для получения искусственных веществ, фурфурола, фенола, текстиля, топлива, сахара, белков, витаминов и других продуктов. Например, из 100 кг древесины можно изготовить 20 л [c.235]


    Следовательно, основными источниками для получения сжиженных углеводородных газов (пропан, бутан) должны служить попутные газы, газы газоконденсатных месторождений, искусственные нефтяные газы и газы деструктивной гидрогенизации твердого и жидкого топлива. Однако следует указать, что газы термической и термокаталитической переработки нефти и нефтепродуктов как содержащие значительное количество реакционно-способных непредельных углеводородов прежде всего должны подвергаться соответствующей переработке для их фракционирования с последующим использованием в различных химических синтезах. [c.173]

    У белковой инженерии большое будущее. Но даже достижения сегодняшнего дня в данной области весьма значительны. Мы являемся свидетелями активного использования белков и ферментов для крупномасштабного тонкого химического синтеза, эффективного разделения рацемических смесей энантио-меров, в качестве биосенсоров, лекарственных средств при заместительной терапии многих заболеваний человека, для получения пищевых продуктов, детергентов и эффективных моющих средств. Все это требует проведения поиска еще более эффективных биокатализаторов, в том числе и создания искусственных измененных ферментов методами белковой инженерии. Наш краткий обзор не ставит задачи дать исчерпывающую картину полученных результатов, и основной акцент делается на использовании генно-инженерных методов при конструировании белков с новыми свойствами. Однако было бы несправедливым умолчать о химических подходах получения биокатализаторов с новыми свойствами, активно применяемых в современной биотехнологии. [c.369]

    Газификация. Газификация твердого топлива в последние десятилетня была законсервирована в связи с широким использованием природного газа. Ныне она вновь приобретает значение как источник искусственного газообразного топлива и химического сырья — синтез-газа, восстановительного газа, водорода. Разрабатываются новые, более эффективные методы газификации дешевого твердого топлива под давлением с использованием теплоты ядерных реакторов. [c.50]

    Зелинский синтезировал нафтеновые кислоты из соответствующих нефтяных углеводородов. Хлорированием узких бензиновых фракций он получал хлориды нафтенов, а затем действием углекислоты на магнийхлоруглеводороды, полученные из этих хлоридов, синтезировал ряд нафтеновых кислот С-,—С - из которых были получены соответствующие глицериды. Таким образом, был осуществлен синтез искусственных жиров из нефти. Из этого открытия Зелинский сделал далеко идущий прогноз о возможности химического использования нефти. Мне думается, — писал он в 1902 г.,— что разработанный мной метод добывания органических кислот из различных фракций пефти может открыть широкую будущность в развитии новых химических соединений, производных гексаметилена, из которых многие обещают дать целый ряд интересных [c.309]

    Описываются исследования предаварийных режимов потенциально опасных процессов на физических моделях — лабораторных и пилотных установках. Эти исследования дают возможность отработать методику эксперимента, обеспечивающую получение информации о нужных параметрах в условиях безопасности, а также установить количественные соотношения параметров предаварийного режима процессов. В этой связи описаны лабораторные и пилотные установки, на которых производились исследования потенциально опасных процессов нитрования и магнийорганического синтеза. На лабораторных установках удается получить качественную картину поведения процесса в предаварийных и даже в аварийных режимах и накопить необходимые данные для конструирования пилотной установки. На пилотных установках выявляются количественные соотношения с учетом требований масштабирования и с обеспечением безопасности. Последняя достигается применением особых методов ( метод искусственного снижения опасности ) и резервированием избыточной мощности защитных воздействий. В книге описаны также методы термоаналитических исследований химических процессов, позволяющие получить необходимые (и обычно отсутствующие у технологов) данные о кинетике процесса. Эти данные крайне необходимы для исследования процессов методами математического моделирования. Параллельное использование действующего объекта, привязанного к ЭВМ, и его модели позволяет максимально приблизить модель к реальности и провести ряд исследований с помощью специально разработанных алгоритмов проверки адекватности модели, оптимизации и других, [c.8]

    Разработка новых подходов и методов для анализа связи между структурой и свойствами и биологической активностью органических соединений, открывающих путь к эффективному планированию синтеза соединений с заданными характеристиками, является важной проблемой современной органической химии. В статье рассматриваются основные принципы методов предсказания физико-химических свойств и биологической активности химических соединений, а также дизайна новых соединений с заданными свойствами и биологической активностью, развиваемые нами новые подходы и их применение для решения конкретных задач. Основные направления работ связаны с построением регрессионных моделей и генерацией структур, использованием локальных молекулярных характеристик и искусственных нейронных сетей, молекулярным моделированием белков и лигандов. [c.112]

    В тех случаях, когда биологическая активность какого-либо природного источника обусловлена действием естественного комплекса его веществ (например, водный экстракт растения, спиртовая вытяжка моллюска и др.), исследование ведется по пути выращивания культуры ткани этого организма в лабораторных условиях. Метод не приобрел еще широкого индустриального применения, но научные изыскания в этом направлении весьма интенсивны. При этом следует отметить, что очень часто химический состав искусственно выращенной культуры ткани качественно и количественно отличается от первоисточника. Этот факт может быть использован как метод синтеза с помощью ферментной системы [c.14]

    Основное направление использования целлюлозы (рис. 18.2) как в настоящем, так и в будущем — производство волокнистых полуфабрикатов для бумаги (см. 16), искусственных волокон и других производных целлюлозы (см. 17). При этом переходящие в раствор часть полиоз и основное количество лигнина, в том числе в виде продуктов деструкции, находятся в отработанных варочных щелоках. Органические вещества щелоков могут служить источником энергии или же находить другое полезное применение, в том числе путем дальнейшей переработки (см. 18.5 18.6). Целлюлоза может также использоваться и путем деструкции до глюкозы — первой и наиболее важной ступени превращений целлюлозы в низкомолекулярные продукты, открывающей широкие возможности для получения различных химических продуктов, в том числе перспективных в качестве сырья для синтеза новых полимеров вместо природного газа и нефтехимикатов (см. рис. 18.2). [c.408]

    В лабораториях этой же фирмы в дальнейшем были проведены детальные исследования воздействия факторов внешней среды, условий роста на кинетику кристаллизации. Значительные исследования физико-химических условий синтеза кварца осуществлялись Р. Лодизом. Проведенные им работы позволили рекомендовать для проверки на опытном производстве большие скорости роста (до 5 мм/сут) при давлениях порядка 200 МПа при выращивании кварца на затравках базисного среза. Однако практического использования такая рекомендация не получила, так как опыт выращивания кристаллов пьезокварца нужного качества показал, что оптимальные скорости роста должны иметь на порядок меньшую величину. Помимо непосредственного вклада Р. А. Лодиза в разработку промышленного производства синтетического кварца необходимо отметить его большую популяризаторскую деятельность написано значительное число научно-популярных статей и монографических работ по синтезу монокристаллов, в том числе по искусственному получению кристаллов кварца. [c.16]

    В результате освоения этих новых методов и процессов появилась возможность организовать промышленный синтез метанола из окиси углерода и водорода под давлением, осуществить производство искусственного жидкого топлива. В связи с возрастающим использованием двигателей внутреннего сгорания стали развиваться и процессы переработки нефти в моторные топлива (крекинг) и связанные с ними производства, в которых продукты переработки нефти используются как химическое сырье. На этой основе возник и начал бурно развиваться промышленный органический синтез соединений алифатического ряда. [c.120]

    Промышленность органического синтеза поставляет сырье для производства пластмасс, искусственного волокна, лаков и красок и ряда других важнейших отраслей промышленности. В решении майского (1958 г.) Пленума КПСС об ускорении развития химической промышленности и в особенности производства синтетических материалов отмечено важнейшее значение создания дешевых мономеров для синтеза пластмасс. XX съезд КПСС указал, что к числу важнейших задач химической и нефтяной промышленности относятся резкое увеличение использования нефтяных природных газов и нефтепродуктов для производства синтетического каучука, спирта, моющих средств и других синтетических продуктов, замена пищевых продуктов, идущих на технические цели, синтетическим сырьем, а также расширение ассортимента и увеличение производства синтетических смол, высококачественных лаков и красителей, пластических масс и т. д. [c.5]

    В тех случаях, когда реакция протекает с уменьшением объема, при повышении давления химическое равновесие сдвигается в сторону увеличения выхода конечного продукта. В таких реакциях применение повышенного давления в сочетании с использованием достаточно активного катализатора оказывается весьма эффективным. Примерами подобного рода реакций могут служить синтез аммиака, гидрирование диизобутилена с получением изооктана, гидрирование жиров, а также ряд процессов получения искусственного жидкого топлива. [c.6]

    Материалы, изготовленные из природных и искусственных органических соединений, широко применяются во многих отраслях народного хозяйства. Благодаря синтезу новых, полимеров их ассортимент постоянно растет. В этой главе будет обсужден вопрос об использовании органических материалов в строительстве в качестве химически стойких элементов и изделий,-защиш,ающих неорганические материалы от коррозионного воздействия воды. [c.260]

    К настоящему времени разработаны пути синтеза искусственных антиоксидантов, как правило, аналогов биологически активных веществ. Биологический спектр применимости синтетических антиоксидантов зависит от их влияния на систему природных антиоксидантов и на интенсивность свободнорадикального окисления липидов. Изучение таких физико-химических параметров антиоксидантов, как антирадикальная активность, позволяет не только определить область их использования в биологии и медицине, но и вести направленный поиск биологически активных соединений. [c.434]

    Промышленность синтетических волокон возникла в США в конце 30-х годов (1939 г.), когда производство искусственных волокон уже достигло значительных размеров. В отличие от искусственных волокон, которые получают в результате химической переработки природных высокомолекулярных продуктов (целлюлозы), синтетические волокна изготавливают методами химического синтеза, в основном на основе нефтехимических продуктов. Из синтетических волокон в США вырабатывают полиамидные, полиэфирные, полиакрилоиитрильные, полиолефиновые, полиуретановые (спандексные волокна) и в небольших количествах поливинилхлоридные, поливинилидеихлоридные, политетрафторэтиленовые и др. По сочетанию таких свойств как прочность, эластичность, устойчивость к истиранию синтетические волокна превосходят природные и искусственные. На основе синтетических волокон можно создавать текстильные метериалы с заранее заданными свойствами для использования в различных областях хозяйства. [c.327]

    Главнейшей областью технического использования каменноугольной смолы, как исходного химического материала, является производство искусственных синтетических органических веществ. Большая часть получающейся на земном шаре каменноугольной смолы перерабатывается на промежуточные продукты для дальнейшего органического синтеза. Наряду с искусственными красящими веществами разработка каменноугольной смолы в ее современном объеме доставляет еще множество соединений, которые находят бесчисленные и растущие с каждым днем применения в самых разнообразных областях лечебные вещества, с )отографн-ческие препараты, пахучие вещества, сладкие вещества, алкалоиды, пластические массы, волокнистые вещества и многие другие. Короче говоря, каменноугольная смола является первичным исходным материалом для производства необозримой массы ныне известных углеродистых соединений, принадлежащих к так называемому ароматическому ряду. [c.15]

    Как справедливо отаечалскь в литературе [1], открытие Коль-белем и Энгельгардтом [2] реакции синтеза углеводородов и спиртов непосредственно из водяного пара и окиси углерода, исключая предварительное получение дорогостоящего водорода, значительно распшряет возможности промышленности синтеза искусственного жидкого топлива и химических продуктов. Дальнейшее развитие работ в ЭТОЙ области [3] показало возможность использования в качестве сырья для этого синтеза дешевого, иногда просто не находящего использования доменного газа. Исследования реакции синтеза из окиси углерода и водяных паров, начатые в ИГИ АН СССР [4] подтвердили, в основном, результаты немецких ученых. [c.84]

    Итак, основными источникалш для получения сжи/кенных углеводородных газов (пропан, бутан) должны служить попут- 1ые газы, газы газоконденсатных месторождений, искусственные нефтяные газы и газы деструктивной гидрогенизации твердого и жидкого топлива. Однако сле,дует указать, что газы термической и термокаталитической переработки нефти и нефтепродуктов как содержащие значительное количество реакционно-способных непредельных углеводородов прежде всего долл<-ны подвергаться соответствующей переработке для их фракционирования с последующим использованием в различных химических синтезах В связи с изложевным процессы получения сжиженных газов будут ниже рассмотрены применительно к попутным и другим аналогичным газам. [c.230]

    Монография ставит целью проанализировать всю совокупность проблем, связанных с созданием контактно-каталитических производств, и выработать определенную стратегию для решения этих проблем на основе глубокого проникновения во внутреннюю сущность процессов с привлечением современных приемов организации научного исследования, ориентированных на создание и активное использование разветвленных баз знаний в машинных системах искусственного интеллекта. С позиций системного анализа рассмотрена вся совокупность проблем, связанных с расчетом, проектированием и оптимальной организацией контактнокаталитических процессов. В книге дано детальное исследование структуры внутренних связей на всех уровнях иерархии гетерогенно-каталитической системы. Многоэтапная процедура разработки гетерогенно-каталитического процесса представляется как взаимодействие двух систем причинно-следственной физико-химической системы, формализующей собственно объект исследования, и программно-целевой системы принятия решений при анализе и синтезе контактно-каталитических процессов. Подход ориентирован на использование ЭВМ пятого поколения и решение проблем гетерогенного катализа с позиций искусственного интеллекта. [c.4]

    Современная неорганическая химия состоит из многих самостоятельных разделов, например химии комплексных соединений, химии неорганических полимеров, химии полупроводников, металлохимии, физико-химического анализа, химии редких металлов, радиохимии и т. п. Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое второе рождение в результате широкого привлечения квантовохимических методов, зонной модели энергетического спектра электронов, открытия валентнохимических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу создание новых неорганических веи еств с заданными свойствами. Неорганическая химия, как и любая естественная наука, руководствуется методологией диалектического материализма, следовательно, опирается на ленинскую теорию отражения От живого созерцания к абстрактному мышлению и от него к практике... . Живое созерцание осуществляется, как правило, при помощи эксперимента — наблюдения явлений в искусственно созданных условиях. Из экспериментальных методов важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического строения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Аналитическая химия использует химические реакции для установления качественного и количественного состава вещества. Кроме того, но химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез достиг большого успеха, особенно в получении особочистых соединений в виде монокристаллов. Этому способствовало применение высоких температур и давлений, глубокого вакуума, внедрение бесконтейнерных способов синтеза и т. п. [c.7]

    В настоящее время методы синтеза олиго-. и полинуклеотидов разработаны в такой степени, что в короткие сроки могут быть получены искусственные фрагменты ДНК большой длины и практически любого состава. Достигнут существенный прогресс и в синтезе полирнбонуклеотидов. Общая стратегия синтеза полинуклеотидов и нуклеиновых кислот заключается в комбинированном использовании химических и ферментативных методов. Относительно небольшие олигонуклеотиды синтезируют химически, а затем соединяют в длинные цепн с помощью соответствующих ферментов. [c.348]

    С другой стороны, процессы окисления имеют большое значение в проблеме использования нефти и природных газов как источника химического сырья. Природные и промышленные углеводородсодер- жащие газы, жидкие и твердые углеводороды нефти могут быть превращены путем окисления кислородом воздуха в такие ценные химические продукты, как формальдегид и его гомологи [21, 22, 23, 24, 25, 10, 26], различные спирты [27, 28], муравьиную, уксусную и высшие органические кислоты , в том числе и те, которые могут служить для мыловарения [29, 35, 36, 37, 38, 39, 40, 41], приготовления синтетических пищевых жиров [41], для получения искусственных восков [42] и олифы [43], как исходные материалы для синтеза пластических масс и т. д. Некоторые из этих процессов реализованы в настоящее время в полупромышленных и промышленных масшта- бах у нас и за границей, несмотря на не разрешенные еще полностью затруднения в части разделения и очистки получаемых продуктов. Наконец, следует упомянуть, что окисление воздухом тяжелых нефтяных остатков уже давно используется в технике для получения асфальта. [c.10]


Смотреть страницы где упоминается термин Химический синтез ДНК использование ПЦР для синтеза искусственных: [c.60]    [c.220]    [c.610]    [c.310]    [c.37]    [c.56]    [c.212]    [c.325]    [c.212]    [c.212]    [c.477]   
Генетическая инженерия (2004) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте