Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрация воды в воде

    На рис. 91,6 изображены кривые, выражающие зависимость между концентрациями воды в жидкости и в паре при различных концентрациях уксусной кислоты. На этом рисунке нижняя кривая выражает условия фазового равновесия в бинарной системе вода—этилацетат. Другой граничной кривой является кривая равновесия бинарной системы вода—уксусная кислота. Расчет производится следующим образом. [c.236]


    Концентрация органических кислот и сложных эфиров редко превышает пределы 40—200 и 50—100 мкг/л. Содержание углеводов несколько выше и нередко достигает единиц миллиграммов в 1 л. Значительную часть органического вещества природных вод составляют гумусовые вещества гуминовые кислоты и фульвокислоты. Особенно богаты гуминовыми веществами воды северных районов страны, где концентрация их часто составляет единицы и десятки миллиграммов на 1 л. В морских и океанических водах среднее содержание гумусовых веществ ниже и редко превышает 3 мг/л. [c.136]

    Исследование газопроницаемости пленок полимеров, находящихся в равновесии с сорбированными парами, показало, что при сорбции паров СеНи и U полиэтиленом низкой плотности наблюдается значительное повышение проницаемости полиэтиленовых пленок по отношению к азоту и кислороду . При этом значение коэффициентов газопроницаемости Р полиэтилена линейно возрастает с увеличением весовой концентрации сорбированного гексана, а значение энергии активации Ер остается приблизительно постоянным. Изменение значений Р обусловлено ростом коэффициента диффузии D, в то время как коэффициент растворимости газов а при сорбции пленкой органических растворителей существенно не изменяется. В системе гидрат целлюлозы — вода значение Р для О2 и N2 и в особенности для СО2 быстро возрастает с увеличением относительного давления паров воды. График зависимости Р для Oj от весовой концентрации воды в гидрате целлюлозы имеет два линейных отрезка, пересекающиеся в точке, отвечающей относительной влажности, равной 74%. На значения Р полиэтилена для О2, N2, СО2 относительная влажность газов не влияет. Предполагается, что сорбция паров воды не влияет на содержание кристаллической части и набухание происходит только в аморфных областях полимеров. Газопроницаемость смеси газов часто зависит от высокой растворимости одного из входящих в смесь газов. Так, исследование полиэтилена по отношению к смеси этана с бутаном показало что проницаемость смеси увеличивается с ростом концентрации бутана по сравнению с расчетной (по исходным коэффициентам Р) [c.172]

    Интенсивность поглощения в области 6200—6000 см определяется не только концентрацией НС1, но и концентрацией воды в растворе, причем при одной и той же концентрации НС1 поглощение увеличивается при возрастании общего содержания воды в растворе, что, по-видимому, можно объяснить увеличением степени электролитической диссоциации НС1 в растворе и более полной гидратацией протона. С увеличением содержания НС1 происходит изменение и других полос поглощения (рис. 71) интенсивность полосы поглощения молекул в ассоциациях вода — растворитель заметно уменьшается, полоса поглощения молекул в ассоциациях вода —вода при малых концентрациях H I остается практически неизменной уменьшение ее интенсивности можно заметить лишь при концентрации НС1 выше 3—4 N. Это свидетельствует о том, что гидратация протона происходит за счет разрушения ассоциатов вода — растворитель. Образовавшийся ион гидроксония сольватируется молекулами растворителя, что приводит также к некоторому смещению полосы С = 0-группы. [c.162]


    Изменение температуры раствора приводит к перераспределению молекул воды в ассоциациях вода — вода и вода — растворитель. При малом общем содержании воды (до 0,5%), когда концентрация жидкой воды пренебрежимо мала, перераспределение идет между ассоциациями с симметрично и асимметрично нагруженными молекулами воды. При этом в спектрах поглощения при повышении температуры растет интенсивность полос воды в асимметричных ассоциациях RB...HOH...RB и уменьшается в симметричных RB...HOH...BR. При концентрации воды свыше 1,5—2%, когда полоса жидкой воды четко фиксируется в спектрах (6920 сж" ), при повышении температуры растет интенсивность полос поглощения молекул воды в ассоциациях вода — растворитель, а в ассоциациях вода — вода уменьшается (рис. 2). При очень больших концентрациях воды (свыше 30—40%) характер изменения полос поглощения противоположен. Этот температурный эффект можно объяснить, если учесть, что при очень малом содержании воды ассоциации типа вода — растворитель образуются чаще, чем вода —-вода, хотя энергия связи между молекулами воды много больше, чем между молекулами воды и растворителя. При повышении температуры играет все большую роль вероятностный фактор, при понижении температуры — энергетический. Рассмотренные выше температурные эффекты необходимо [c.188]

    Так, например, газохроматографический анализ смесей органических соединений с водой представляет серьезные трудности, вследствие несимметричности пика воды, близких времен удерживания воды и органических кислородсодержащих соединений, что особенно резко проявляется при определении малых концентраций воды в органических соединениях. Для преодоления этих трудностей в работах [11, 12] были разработаны специальные методы определения следов воды в органических растворителях и анализа водных растворов. Методика анализа основана на количественном превращении паров воды в ацетилен в результате реакции с карбидом кальция. Образующийся ацетилен в виде узкого пика быстро элюируется впереди анализируемых компонентов. Метод применим для анализа смесей воды и углеводородов, альдегидов, кетонов, эфиров, спиртов. [c.11]

    Режим хлорирования в отношении длительности подачи хлора и периодичности его дозирования определяется также опытным путем на основе специальных наблюдений за интенсивностью биологических обрастаний в данных конкретных условиях. Из практики известны случаи, когда конденсаторы турбин загрязнялись очень быстро и воду приходилось хлорировать каждые 1,5—2 ч при длительности подачи реагента до 30 мин. При медленном загрязнении конденсаторов бывает достаточным хлорировать воду 1—2 раза в сутки в течение 1—2 ч. Погибающие при хлорировании колонии бактерий и водорослей теряют прочность связи с поверхностью металла, легко смываются с нее и выносятся из конденсатора потоком воды. Когда подача хлора прекращается, на очищенной поверхности металла снова начинают поселяться живые организмы. На одной и той же установке режим хлорирования меняется по временам года в соответствии с сезонными изменениями качества воды источника водоснабжения. В связи с непостоянством метеорологических условий в режимы хлорирования требуется ежегодно вносить уточнения. Замечено, что во время паводков биологические обрастания уменьшаются. Считают, что это связано с резким увеличением в воде концентраций грубодисперсных примесей, т. е. ила, песка и т. п., которые, перемещаясь по трубкам конденсатора с большими скоростями, механически очищают поверхность от возникающих обрастаний. [c.245]

    При постоянной концентрации высаливающих агентов состав которых входят одноименные анионы коэффициенты распределения при извлечении кетонами, диметил-пиридином и ТБФ меняются симбатно изменению таких параметров, как электроотрицательность металла в водном растворе X,- [18], изменение потенциального барьера выхода воды из первой гидратной оболочки иона АЕ [9], изменение энтропии воды на разделе первой и второй гидратной оболочек —Д5п [19, 20] и отношение времен релаксации молекулы в поле иона и в поле структуры воды Тг /т [21, 22] (рис. 3—6). Такое совпадение изменения значений коэффициентов распределения и параметров, характеризующих гидратацию катионов, трудно объяснить какими-либо другими причинами, кроме как влиянием катионов на состояние воды в равновесных водных фазах. [c.124]


    С целью определения эффективности разделения водно-топливных эмульсий от воздействия только электростатического поля целесообразно проводить предварительное отстаивание их в поле сил тяжести. Установлено, что процесс разделения смесей водно-топливных эмульсий с топливами (Т-1, ТС-1, Т-2) при отстаивании начинается практически сразу после выключения механической мешалки. Процесс разделения идет тем интенсивнее, чем больше концентрация воды в исходной эмульсии. В эмульсиях с более вязкими топливами процесс разделения идет менее интенсивно. Так, водно-топливная эмульсия (сх-1 = 15 %) после 30 с отстаивания содержала всего 3,7 % воды, остальная вода коагулировала из коллоидного раствора. Наиболее интенсивно процесс седиментации под действием сил тяжести идет в начальный период времени. [c.20]

    Метод определения фазовой стабильности. Испытание проводится в два этапа. На первом этапе по ГОСТ 14870—77 Реактивы. Методы определения содержания воды , п. 2.3.3.2 Электрометрическое титрование проводят определение концентрации воды в испытуемом бензине. На втором этапе испытания, если будет установлено, что концентрация воды в испытуемом бензине летнего вида 0,05% мае. и более или в бензине зимнего вида 0,15% мае. и более, проводят определение температуры помутнения по ГОСТ 5066—56 (методом без обезвоживания). При меньшем количестве растворенной воды отбирают пробу испытуемого бензина в количестве 30 см и помещают в коническую колбу вместимостью 50 см . С помощью медицинского шприца на 1 см вводят воду до концентрации 0,05% в летний бензин и до концентрации 0,15%— в зимний бензин. Пробу тщательно перемешивают для растворения введенной воды в бензине. Затем определяют температуру помутнения испытуемого бензина по ГОСТ 5066—56. [c.414]

    Эффект автоускорения наблюдается при щелочном алкоголизе и гидролизе ПВА в спиртах и смесях спиртов и ацетона с водой. В то же время в водно-щелочной среде образуется сополимер ВС и ВА с неупорядоченной структурой. По мнению Саку-рада, отсутствие автокаталитического эффекта в водной среде вызвано трудностью адсорбции полимером щелочи из воды, по сравнению с адсорбцией из водно-ацетонового раствора. Авторы работ [77, 78] также считают, что снижение скорости щелочного гидролиза ПВА с повышением концентрации воды согласуется с сорбционной теорией автокатализа, так как вода сольватирует ион ОН и тем самым ухудшает его взаимодействие с гидроксильной группой звена ВС. [c.77]

    Эмульсия определяется как дисперсная система, состоящая из двух нерастворимых жидкостей. Примером является водонефтяная эмульсия, которая представляет собой грубодисперсную систему с размером капель дисперсной фазы от 0,1 мкм и выше. Водонефтяные эмульсии бывают двух видов. Если объемная концентрация воды мала по сравнению с объемной концентрацией нефти, то сплошной фазой является нефть, а вода в виде взвешенных в нефти капель представляет собой дисперсную фазу. Такого вида эмульсии называются обратными или эмульсиями типа вода в масле (в/м). Если объемная концентрация нефти мала по сравнению с объемной концентрацией воды, то такая эмульсия называется прямой или масло в воде (м/в). При этом вода служит сплошной, а нефть — дисперсной фазой. [c.243]

    В безводных апротонных растворителях титан также не пассивируется. Например, в растворах НС1 в ДМФ титановый анод при концентрациях воды менее 0,3 % находится в активном состоянии, при концентрации более 0,6 % — в пассивном. В интервале 0,6 % >СнгО>0,3 % на титане наблюдается питтинги. В отсутствие тока с ростом содержания воды размеры питтингов и их число уменьшаются [1164]. [c.116]

    Известно, что нет такого производства, которое бы не использовало воду. Вода расходуется каждым населенным пунктом, промышленностью и сельским хозяйством в огромных количествах. Примерно % ее превращается в стоки. Стоки исчисляются миллиардами кубометров в год, попадают в водоемы, загрязняют и заражают их ядовитыми и токсическими соединениями. Часто загрязненная ими вода делается непригодной ни для питьевых, ни для хозяйственно-бытовых целей. Позтому возникает тревога о воде, появляется тревожное слово водный голод , ибо уже нет тех избытков чистой воды, которой в прежние времена разбавляли эти стоки до безвредных для жизни концентраций. [c.20]

    ИЛИ за счет снижения скоростей побочных реакций. Эксперименты показали [94], что введение паров воды не только несколько снижает содержание примесей, но в определенных условиях значительно увеличивает активность катализатора. Установлено, что производительность катализатора меняется в зависимости от содержания паров воды в газах синтеза. В интервале исследованных температур и при давлении 32 МПа максимальное повышение производительности (на 25—45%) наблюдается при парциальном давлении паров воды, равном 0,07—0,17 МПа. При повышении температуры оптимальное содержание паров воды увеличивается (рис. 3.7 парциальное давление СО 3,8 МПа, объемная скорость газа 40-10 ч ). По достижении определенной концентрации паров воды дальнейшее повышение ее тормозит образование метанола вплоть до содержания, характерного для аналогичных условий синтеза при работе на сухом газе. Следует отметить, что чем ниже температура процесса, тем уже интервал концентраций паров воды, при котором наблюдается повышение производительности. При увеличении парциального давления оксида углерода эффект влияния паров воды остается [c.78]

    Таким образом, кислота или основание с рК, например, около 8 в разбавленных водных растворах, не содержащих других кислот или оснований, диссоциирует максимум на 9%. Удовлетворительное приближение к максимальной степени диссоциации наблюдается при концентрациях около 10 моль л, дальнейшее разбавление раствора (при рК 8) не способно заметно увеличить степень диссоциации. Это объясняется тем, что в очень разбавленных растворах диссоциация слабой кислоты (основания) подавляется водородными (гидроксильными) ионами воды. По отношению к разбавленным растворам слабых кислот (оснований) вода способна проявлять свои кислотные (или основные) свойства. Чем меньше концентрация слабого электролита в растворе и чем меньше его константа диссоциации, тем сильнее влияние воды на степень диссоциации. Степень диссоциации в очень разбавленных растворах можно изменить только путём изменения pH или температуры. [c.26]

    Очистка растворителя. Коммерческий ацетон имеет достаточно высокую чистоту, однако дальнейшее повышение чистоты, особенно в отношении содержания воды, весьма затруднительно. Предложено несколько методов очистки. Коци и Сиао [2] сушили ацетон над безводным aS04 (25-50 г/л) в течение 2 нед и затем перегоняли со свежей порцией aS04 (10 г/л). При этом концентрация воды в конечном продукте была равна 15-25 мМ. Воду удаляли также перегонкой с Р2О5 [4]. В этом случае остаточная концентрация воды составляла 0,001%. Однако такая очистка вызывала полимеризацию. Для удаления воды растворитель перколировали через молекулярные сита типа 5А [3.  [c.48]

    При более высоком содержании воды в бензоле ее молекулярный вес увеличивается с повышением концентрации воды в бензоле. Если считать, что в ассоциированном состоянии находится только избыточное при данной температуре количество воды, то молекулярный вес воды, образующей водородную связь с молекулами присадки, окажется равным 72, т. е. присадка удерживает в растворенном состоянии ассоциат, состоящий из четырех молекул воды. Избыточная вода начинает выделяться в тот момент, когда содержание ее в топливе становится настолько высоким, что последнее не может удерживать ее без добавления присадки. Присадка взаимодействует с выделившейся водой (образуется водородная связь) и удерживает ее в топливе в растворенном состоянии. Можно предположить, что присутствие присадки в топливе не оказывает влияния на первичный процесс выделения избыточной воды из топлива происходит конденсация водяных паров на центрах конденсации с образованием первичных ассоциатов, которые взаимодействуют с присадкой, и благодаря этому удерживаются в топливе, т. е. присадка практически повышает растворимость воды в топливе. [c.132]

    Исследовано также влияние концентрации воды, стабилизаторов и метанола на стабильность бензино-метанольных смесей. При увеличении концентрации воды от 0,07 до 0,8% (масс.) зависимость температуры расслаивания от концентрации метанола проходит через максимум, а при концентрации воды более 1% (масс.) в области низких концентраций метанола (10— 20% масс.) появляется пеоегиб (рис. 6.14). Причем, чем выше концентрация 2-метилпропанола-1 в бензино-метанольных смесях, тем при более высоком содержании воды наблюдается перегиб на кривых, описывающих зависимость расслаивания от концентрации метанола. Характерно, что npiH высоких концентрациях метанола (60—80% масс.) стабильность смесей незначительно зависит от концентрации воды, /в то время как при низких концентрациях метанола это влияние проявляется резко. [c.218]

    К [34]. Хотя природа связывания молекул воды при образовании различных кристаллических решеток совершенно различна, объединенные вклады трех колебательных и трех поступательных степеней свободы молекул воды приблизительно равны. Поэтому значение теплоемкости воды в зависимости от ее содержания в полимерах дает ценные указания о количестве связанной воды. Если при низких концентрациях в кристаллических гидратах вода специфически связывается, то ее вклад в теплоемкость будет мал и равен вкладу льда. В области высоких содержаний в основном присутствует объемная вода, причем вклад воды приблизительно вдвое превышает вклад льда. Можно ожидать, что в промежуточной области величина теплоемкости будет проходить через максимум, если при повышении температуры связанная вода с низким значением энергии превраш,ается в свободную воду с более высокой энергией. Вблизи комнатной температуры теплоемкость была определена для гидратированных образцов коллагена [34, 35], эластина [30], поли-2-(2-оксиэтоксиэтил)метакрилата [36] и метилцеллюлозы [37]. Значения теплоемкости Ср для образцов, содержащих на 1 г полимера у граммов воды, в зависимости от значения у представлены на рис. 7.1. Во всех случаях экспериментальные данные укладываются на прямые линии. Наклоны этих линий дают значение парциальной молярной теплоемкости Ср. Значения, полученные для вклада воды в теплоемкость, находятся в интервале значений для объемной воды [18 кал/(град моль)]. Это может служить однозначным указанием на то, что воду, сорбированную этими образцами, можно рассматривать в термодинамическом смысле как отдельную жидкоподобную фазу. Значения парциальной молярной теплоемкости при комнатной температуре намного ближе к значениям для объемной воды, чем для льда. Отсюда можно полагать, что свойства сорбированной воды также близки к свойствам объемной воды. С учетом экспериментальной ошибки при комнатной температуре может присутствовать максимально лишь несколько процентов связанной воды. Сходство результатов, полученных для совершенно разных полимеров, говорит о том, что распространенная концепция, согласно которой сорбированная вода может [c.145]

    При дальнейшем росте температуры темп увеличения скорости процесса замедляется, и в, интервале 280—320° С скорость реакции практически не изменяется. Дальнейшее повышение температуры сопровождается увеличением скорости превращения, вплоть до 420—430° С, где скорость реакции резко падает Энергая активации, найденная в узком интервале температур 380—400° С, составляет величину 11— 12 ккал1моль. Сложная зависимость скорости реакции от тем-лературы может быть объяснена изменением концентрации адсорбированной воды. При низкой температуре (Н,0)адс > (Рпов), так что увеличение температуры ускоряет процесс соответственно энерпии активации образований или распада переходного комплекса. В каком-то температурном интервале, зависящем от парциального давления пара воды, начинает сказываться уменьшение (НгО) аде- Увеличение скорости реакции выше 320° С связано, вероятно, с отрывом электрона от группы ОН или, иначе говоря, второго электрона от молекулы воды с образованием другого переходного комплекса с большей энергией активации. Выше температуры 420—430° С, ио-видимому, дефектная решетка не может существовать из-за сильно возросшей подвижности ионов — реакция сопровождается выделением новой твердой фазы, затрудняющей доступ молекул воды. [c.58]

    При отнесении обсуждавшихся выше частот Штраусс и Саймонс [386,387] использовали спектральные данные для метанольных растворов с небольшими добавками воды. Было обнаружено, что даже при концентрации воды 0,1 М полоса ОН-колебания, приписанная концевой молекуле метанола в цепи, исчезает. Из этого можно сделать вывод, что каждая молекула воды является мостиком между двумя цепями, причем атомы водорода молекул воды связаны с атомами кислорода концевых молекул метанола, имеющими свободные электронные пары. Однако полоса I, приписанная сильнейшей водородной связи, также исчезает, тогда как II становится сильнее. Это может указывать на вхождение молекулы воды в координационную сферу, хотя данное объяснение противоречит тому факту, что в метанольном растворе способность молекул воды к образованию водородных связей меньше, чем у метанола. Вероятнее всего, имеет место образование циклического сольвата  [c.118]

    Исследования каталитического действия фтористого бора Кларком [19] в четыреххлористом углероде при О—25° показало, что вода является сокатализатором. При концентрации воды меньше Ю моль 1л и избытке фтористого бора скорость зависела от [Стирол] -[НгО], тогда как для [НгО] > 10 моль1л скорость зависела от величины [Стирол] и не зависела от [НгО]. При низких концентрациях воды третий порядок относительно стирола не сохранялся до высоких степеней превращения, причем скорость в процессе реакции снижалась, а при высоких концентрациях воды процесс к концу ускорялся. Степень полимеризации уменьшалась при повышении концентрации воды, но была независима от концентрации стирола. Кларк предположил, что при низких концентрациях воды реакция гомо- [c.228]

    При высокой плотности тока, когда реакция (1) будет требовать большого количества катионов алюминия в определенном энергетическом состоянии для того, чтобы им выделиться из пленки и перейти в раствор, мы можем ожидать, что реакция (2) будет преобладать, хотя реакция (1) также будет иметь место. Это согласуется с наблюдаемыми фактами. Промежуточным продуктом анодного окисления является твердая окись алюминия, но в серной кислоте найден и сульфат алюминия в изобилии — более, чем можно было бы объяснить разрушением окиси алюминия. Становится понятным, что для успешного анодирования ванна должна иметь соответствующий состав. Для протонного механизма необходима вода, но количество свободной воды должно быть минимальным. Свободная вода будет способствовать протеканию реакции (1), которая требует обеспечения каждого иона алюминия, переходящего в раствор, оболочкой из молекул воды. С другой стороны, свободная вода будет тормозить реакцию (2) при условии правильного расположения цепочек из молекул воды на внешней поверхности растущей окисной пленки, конкурируя с ионами (Х04) . Ванны, которые содержат большой запас молекул воды, связанных с молекулами кислоты, и лишь небольшую концентрацию свободных молекул воды, могут дать лучшие результаты. Электролиты, благоприятные для анодного окисления, в действительности содержат много меньше свободной воды, чем общее ее количество. В серной кислоте например, большое количество воды, вероятно, присутствует в виде кислого гидрата, как это следует из кривой точек замерзания, которая имеет максимум при составе, соответствующем Н2504-Н20 таким образом, количество активной воды лежит много ниже общей концентрации воды. Глицерин или гликоль, которые обладают сродством к воде, могут еще более снижать содержание свободной воды, и эти вещества часто добавляются в ванны для анодирования. Фосфорная и хромовая кислоты также обладают сродством к воде, быстро поглощают ее из обычного воздуха, как это делает серная кислота. Случай с щавелевой кислотой менее прост. Твердое вещество имеет состав СООН-СООН-2Н20, но есть основание считать, что две молекулы воды не являются кристаллизационной водой действительно, кристаллическая структура указывает на то, что эти молекулы воды могут присутствовать не в виде НаО, а в виде ионов (Нз0)+ [74а]. [c.229]

    Измерьте ареометром плотность имеющегося в лаборатории концентрированного раствора кислоты (щелочи) и определите по табл. 1 его процентную концентрацию. Рассчитайте, какой объем концентрированного раствора и воды необходим для приготовления раствора заданной нормальной концентрации. (Объем воды в этом случае можно определить как разность между заданным объемом раствора и объемом концентрированного.) Отмерьте маленьким цилиндром (под тягой) подсчитанный объем концентрированного раствора. Большим цилиндром или мензуркой отмерьте вычисленный объем воды. Воду перелейт4 в плоскодонную колбу, затем туда же вылейте не льшими порциями концентрированный раствор при постоянном перемешивании встряхиванием колбы. Цилиндр ополосните несколько раз приготовленным раствором. Закройте колбу пробкой и тщательно перемешайте ее содержимое. Колбу с раствором передайте лаборанту. [c.100]

    Питание микроорганизмов осуществляется через поверхность их тела путем диффузии в результате разных концентраций веществ внутри и вне организма. Движение растворенных веществ лод действием осмотического давления происходит в сторону мень-щих концентраций, воды — в сторону больших. Так как поступающие в клетку вещества вовлекаются в биохимические процессы и усваиваются микроорганизмом, равновесия их внутри клетки и. вне ее практически не наступает. Однако проникновение вещества -В клетку не всегда объяснимо осмосом. Цитоплазматическая мембрана обладает избирательной способностью отличать нужные вещества от ненужных и извлекать их из растворов с малой концентрацией, не пропуская вредные для клетки вещества, содержащиеся в среде в значительных концентрациях (до определенных лределов). Так как поверхность клеток на единицу их массы лредставляет громадную величину, то процессы обмена и размножения микроорганизмов происходят с большими скоростями, и этим объясняются интенсивные биоповреждения некоторых материалов, на которых идут такие процессы. Давление в клетке создается поступившими в нее веществами, продуктами обмена и веществами клеточного синтеза. В связи с высоким осмотическим давлением внутри клетки создается постоянный приток в нее воды. Этим можно объяснить способность микроорганизмов развиваться на сравнительно сухих средах. Так, микрогрибы способны повреждать материалы, имеющие влажность 15...20 % и ниже. [c.15]

    В приложениях часто встречается комбинированный режим конвекционных течений, уже рассматривавшийся нами в гл. 6, при котором местная подъемная сила возникает вследствие одновременного переноса тепловой энергии и химических компонентов. Одно из первых исследований неустойчивости для такой системы было осуществлено Стерном [72]. Важным примером подобного рода является комбинированный перенос тепла и солености в морской воде. В результате такого переноса на поверхности моря возникает слой льда, тающий или намерзающий на своей нижней поверхности, которая контактирует с морской водой. При этом в результате таяния образуется прослойка пресной воды, которая является более легкой и, следовательно, может стабилизировать слой, поскольку влияние солености на плотность часто оказывается более сильным, чем влияние температуры. Намерзающий снизу лед не содержит солевых компонентов. Образующийся в результате слой воды с высокой концентрацией соли формирует мощное дестабилизирующее воздействие, налагающееся на эффект, обусловленный понижением температуры по направлению вверх Оба процесса переноса должны рассматриваться совместно с целью определения как режима неустойчивости, так и возможности возникновения любой формы конвективного переноса, который может развиться в подобном случае. При этом анализ данной проблемы оказывается достаточно затруднительным из-за перемены знака коэффициента Соре для солевых компонентов ири низких температурах воды [9, 10, 56]. Напомним, что эффект Соре представляет собой явление диффузии химических компонентов под воздействием температурных градиентов. [c.229]

    Для растворителей разного типа отклонение градуировочного графика от прямой линии при малом общем содержании воды тем значительней, чем больше в растворе концентрация молекул в ассоциатах вода — вода. Пользуясь методом наименьших квадратов для вычисления коэффициентов экстинкции неразрешающихся полос, можно в некоторых случаях определить не только общую концентрацию воды в растворителе, но и содержание ее в ассоциатах вода — растворитель и вода — вода. [c.160]

    Нормы орошения зависят от многих факторов — концентрации сточных вод, вида выращиваемых культур, климатических условий, типа почв. Использование производственных сточных вод на полях орошения должно быть согласовано с органами Государственного санитарного надзора. Основным требованием к предназначенным для орошения про-изводстзенным сточным водам является исключение возможности вредного их воздействия на почву, подземные воды, выращиваемые культуры, а также на здоровье людей. [c.21]

    Известно [64], что на практике растворяют целлюлозу в гидратах оксидов третичных аминов, т.е. в присутствии некоторого небольшого количества воды. По существу, вода является обязательным компонентом растворяющей системы, и от ее содержанри зависит концентрация целлюлозы в смешанном растворителе. Рассмотрим вкратце основные факторы, характеризующие взаимодействие воды с самой целлюлозой и с аминоксидным растворителем. Неоднозначность механизма взаимодействия целлюлозы с водой обусловлена сложностью строенрм целлюлозы и самой воды. Вода сопровождает целлюлозу как в процессе роста растений, так и после ее выделения из них. В многочисленных литературных источниках утверждается, что вода взаимодействует только с аморфной частью целлюлозы. Небольшие (до 6-7 масс.%) количества связанной с целлюлозой через образование водородных связей (адсорбированной) воды приводят к значительным изменениям как физических свойств целлюлозы (например, тангенс угла диэлектрических потерь, плотность, температура стеклования), так и свойств самой адсорбированной воды (76, 77]. Кластерная структура воды у поверхности целлюлозы переходит в структуру типа "частокола" из полярных молекул (толщина слоя 1,75-2,25 мкм). Анализ показал [78], что соседние диполи воды (при содержании ее в целлюлозе до 7%) направлены преимущественно параллельно, а при содержании более 10% - антипараллельно. Параллельная ориентация [c.378]

    В зависимости от перечисленных условий может изменяться концентрация в водах целого ряда элементов. Элементы, которые могут в конкретных условиях находиться в водах, поступающих к барьеру, в повыщенных концентрациях, приведены в разделе с общим названием парагенная ассоциация . Так, в нейтральных и слабощелочных сероводородных водах могут быть повышены содержания 8 и 8е (см. табл. 1). Такие элементы, как N3, К, КЬ, С8, N, С1, Вг, ], могут находиться в повыщенных концентрациях и быть геохимически подвижными в водах любого состава. [c.25]

    Повьпиению концентрации водорода в водородсодержащем тазе при работе на заданном режиме способствует снижение температуры сепарации этого газа. Так, снижение температуры сепарации на 10 "С при давлении в системе 2,5 МПа позволяет увеличить концентрацию водорода в среднем на 0,4%(об.), а плотность водородсодержащего газа-снизить на 0,017 кг/нм , В промышленных условиях температура сепарации зависит от эффективности работы аппаратов воздушного и водяного охлаждения и в значительной степени определяется температурой окружающей среды, влажностью и др. Для поддержаЕшя температуры сепарации на уровне 15-20 "С и увеличения длительности межрегенерационных циклов до двух лет целесообразно вырабатывать на абсорбционных холодильных установках, например, холодную воду с температурой 5-7 "С [46]. При необходимости получения водородсодержащего газа повышенной чистоты, например для пуска установки, целесообразно применять более глубокий холод. Схема использования захоложенной воды показана на рис. 66. Газопродуктовая смесь из последнего реактора риформинга поступает в теплообменник для сырья, где нагревает сырье, охлаждается в теплообменнике и нагревает циркулирующий теплоноситель, который питает энергией абсорбционную холодильную установку. Вырабатываемую на установке холодную воду используют для окончательного охлаждения газопродуктовой смеси до 10-20 °С. Предварительно ее охлаждают в аппаратах воздушного и водяного охлаждения. [c.103]

    Таким образом, зная концентрацию различных ингредиентов в очищенной сточной воде и в воде водоема, а также степень разбавления сточных вод водой водоема, можно подсчитать концентрации ингредиентов после смешения вод. Лучшее смешение сточных вод с водой водоема достигается рассеивающим выпуском, когда сточная вода попадает в водоем в нескольких точках, а не в одной, как в случае берегового выпуска. Расчет вероятного разбавления сточных вод в проточном водоеме производится по методу В. А. Фролова и И. Д. Родзил-лера, в соответствии с которым внесенные загоязненпя распределяются в воде водоема по упавнению [c.180]

    Писаржевский и Глюкман [42] исследовали влияние растворителя на каталитическое разложение перекиси водорода над платиной и двуокисью марганца на угле. Растворителями служили вода, эфир, смесь эфира и воды и ацетон. Каталитическое разложение в водных растворах происходит мономолекулярно. Кинетика реакции сильно меняется, если в качестве растворителя употреблять смесь воды и эфира скорость реакции в воде с эфиром всегда выше, чем в чисто й Воде или чистом эфире. Наиболее важный фактор во влиянии растворителя на разложение перекиси водорода — действие эффективного пространства растворителя. Оно накладывается на взаимодействие молекул растворителя с ионами действующ его как катализатор металла и ведет к образованию сольватов ионов, участвующ,их тем или иным способом в катализе. Сольватация молекул перекиси водорода, повидимому, не играет особой роли. Пользуясь в качестве растворителя ацетоном, который в противоположность эфиру смешивается с водой во всех пропорциях, Рлюкман [19] обнаружил, что вода ускоряет реак цию, и присутствие 10—15% воды необходимо в этом случае для получения того же эффекта, как и при содержании 0,7% воды в эфире. Небольшое изменение концентрации растворенной в эфире воды (0,7—1,2%о) всегда сильно влияет на скорость реакции (20—30 раз). Для достижения такого же изменения скорости реакции в растворе ацетона приходится добавлять гораздо больше воды, именно до 80%. Кривые, изображающие зависимость скорости реакции от содержания воды, в случае эфира имеют максимум, но этого не наблюдается у ацетона. [c.682]

    Предельно допустимые концентрации, установленные по эстетическим соображениям, основаны на том, что присутствие в воде тех или ипых веществ делает ее менее желательной для употребления. Это относится к веществам, придающим воде неприятный вкус и запах, ухудшающим ее качество с точки зрения экономики и эстетики. Сюда же относятся вещества, токсичные для рыб или растений. Вещества, активно действующие на метиленовую синь и находящиеся в высоких К01щент-рациях в некоторых моющих средствах, могут придавать воде неприятный вкус и пенистость. Хлориды, сульфаты и растворенные частицы также влияют на вкус воды и, кроме того, обладают слабительным действием, а высокоминерализованная вода ухудшает качества кофе и чая. Сульфат натрия и сульфат магния — хорошо известные слабительные с общепринятыми названиями глауберова соль и горькая соль . Послабляющее действие воды, богатой сульфатами, обычно отмечается приезжими из других районов и новыми потребителями. Медь является важным питательным элементом и не представляет угрозы для здоровья. Рекомендуемый предел содержания меди устанавливают таким, чтобы избежать появления у воды медного привкуса. Цинк — также важный элемент в питании человеческого организма, однако в больших количествах он раздражающе действует на желудочно-кишечный тракт. Экстракт хлороформа содержит большое количество органических остатков, до сих пор мало исследованных. Предельно допустимые концентрации веществ, экстрагируемых хлороформом, установлены для того, чтобы не допустить присутствия неизвестных органических соединений. Вода с высокими концентрациями нитратов для взрослых людей не опасна, но у детей может вызывать тяжелые отравления. Многие случаи детской метгемоглобинемии были результатом пользования водой, загрязненной азотосодержащими стоками и забиравшейся из частных водораспределительных систем. В настоящее время еще не разработан способ экономичного удаления избыточных нитратов из воды. Поэтому в тех районах, где вода содержит нитраты в высоких концентрациях, необходимо предупреждать население о потенциальной опасности такой воды для детей. Железо и марганец нежелательны из-за того, что они вызывают появление коричневатых пятен на белье и фарфоре, а также из-за горько-сладкого привкуса, присущего л елезу. Оптимальные концентрации фтора в питьевой воде приведены в табл. 5.3. Количество потребляемой людьми воды зависит от климатических условий, поэтому оптимальные концентрации установлены для средней максимальной дневной температуры воздуха. [c.120]

    Обращается особое внимание [134] на склонность четырехоки- и азота превращаться при взаимодействии с водой в азотную кислоту, являющуюся, как известно, сильным коррозионным агентом. Поэтому необходимо исключить контакт окислителя с влагой воздуха, а также прямое попадание воды. Обводненные окислители становятся коррозионно-активными, и эффективность ингибиторов может резко упасть. Объясняется это тем, что при увеличении концентрации воды в окислителе концентрация ингибитора может снизиться за критическое значение, в результате чего ингибитор превратится в стимулятор коррозионного процесса. Особенно это относится к НР, который эффективен только при фиксированной концентрации и определенном содержании воды. При повышении содержания воды в окислителях на основе азотной кислоты НР может вызвать сильную коррозию нержавеющих сталей. [c.216]

    Реакция взаимодействия между тиосульфатом натрия и серной кислотой приводит к выделению свободной серы, которая появляется в виде мути. Скорость появления мути в растворе будет зависеть от концентрации реагирующих веществ и от температуры. Скорость всего процесса в данном случае будет определяться скоростью распада тиосерной кислоты, так как образование этой кислоты идет очень быстро. Для выполнения опыта взять три бюретки одну наполнить водой, вторую 0,1 н. раствором тиосульфата натрия, третью 0,1 н. раствором серной кислоты. В четыре пронумерованных пробирки налить из бюретки указананое в таблице 1 число мл раствора тиосульфата натрия и воды, в четыре другие пробирки — по 6 мл серной кислоты. Влить в первую пробирку отмеренное количество кислоты и перемешать содержимое пробирки. Отметить по секундомеру время от момента смешения раствора до момента появления мути. Аналогичные опыты [c.81]


Смотреть страницы где упоминается термин Концентрация воды в воде: [c.289]    [c.401]    [c.168]    [c.90]    [c.149]    [c.63]    [c.350]    [c.189]    [c.124]    [c.417]    [c.166]   
Химия (2001) -- [ c.99 , c.191 ]




ПОИСК







© 2025 chem21.info Реклама на сайте