Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы, активность компонента при перегонке

    При экстракции адсорбированные вещества удаляются из угля органическим растворителем. Этому процессу способствует повышение температуры. Десорбированный продукт можно выделить посредством перегонки, экстракции, декантации или осаждения. Угли освобождаются от экстрагента нагреванием или обработкой паром. Примером подобного десорбционного процесса является экстракция сероуглеродом серы, образовавшейся на угле в процессе каталитического окисления адсорбированного сероводорода. Необходимым условием для применения (сравнительно редкого) процесса экстракции является способность десорбируемых веществ (некоторые из них могут синтезироваться в порах активного угля) растворяться в экстрагенте. Сам растворитель при завершении экстракции должен полностью извлекаться из активного угля. К недостаткам процесса следует отнести большие объемы растворителя, необходимые для полной десорбции. Кроме того, экстрагент приходится очищать от растворенных веществ. В целях сокращения объемов растворителей, требующих перегонки после экстракции, предлагалось использовать для десорбции разбавленные растворы целевых компонентов в экстрагирующем агенте [21]. [c.181]


    Обезвоживание пропана. Для обезвоживания жидкого пропана применяется одна из разновидностей азеотропной перегонки. В процессе получения и при последующем хранении жидкий пропан поглощает небольшое количество воды в растворенном виде. При полном насыщении и при температуре 27° в пропане содержится 0,092% мол. воды. Активность воды, растворенной в пропане, очень высока, однако эту воду можно отогнать в виде азеотропной смеси [12]. Схема этого процесса изображена на рис. 24. Влажный пропан непрерывно поступает в колонну для обезвоживания. Сухой пропан (температура кипения при атмосферном давлении —42°) получается в виде остатков, а отогнанный продукт представляет собой азеотропную смесь воды и пропана. После конденсации отогнанный продукт расслаивается на две фазы. Верхняя — углеводородная — фаза возвращается в колонну, а нижняя — водная — фаза сливается. Данные по равновесию системы жидкость — пар для пропана, насыщенного водой, приведены в табл. 26. При низких давлениях константа равновесия для испарения воды из раствора в пропане значительно превышает единицу. Это означает, что в данных условиях вода является более летучим компонентом. [c.129]

    Основные научные исследования относятся к химической термодинамике и кинетике. Открыл (1881— 1884) законы, устанавливающие зависимость относительного состава компонентов в газовой и жидкой фазах растворов от давления пара и температуры кипения двойных жидких систем (законы Коновалова). Создал (1886) основы теории перегонки жидких смесей. Развил (1900) представления о критическом состоянии в системах жидкость — жидкость, указав области гомогенности и расслоения. Экспериментально обосновал (1886— 1900) идеи о химической природе растворов. Детально исследовал гетерогенные каталитические процессы, впервые ввел (1885) понятие активной поверхности, имеющее важное значение в теории гетерогенного катализа, и указал на роль химического взаимодействия реагентов с катализатором при активации молекул. Сформулировал (1886—1888) представления об автокатализе и на год ранее В. Ф. Оствальда вывел (1887) формулу для определения скорости автокаталитических реакций (уравнение Оствальда — Коновалова). [c.251]

    Избыток йода титруется раствором КагЗгОз в присутствии крахмала, конец титрования определяется визуально. Этот метод мы использовали длительное время. Его недостатком является трудоемкость, обусловленная главным образом перегонкой с водяным паром. Для изучения кинетики конденсации в ранних стадиях реакции этот метод является совсем неприменимым, поскольку реакция присоединения формальдегида к активным точкам фенольного компонента идет дальше при перегонке. [c.291]


    Принципиальная сущность экстрактивной ректификации заключается в том, что полярные растворители, применяемые при экстрактивной ректификации, способствуют образованию более идеальных растворов с олефиновыми компонентами смеси, в то время как парафиновые компоненты приобретают более высокий коэффициент активности (т. е. их растворы все более отклоняются от идеальных). В результате этого в присутствии больших количеств растворителя бутаны будут отгоняться, а н-бутилены накапливаться в кубовых остатках с растворителем. В последующем растворитель отделяют от н-бутиленов путем обычной перегонки и возвращают на повторный цикл в колонну экстрактивной ректификации. [c.125]

    Представляет интерес выяснить применимость к данной системе общетермодинамических подходов, которые успешно используются для аппроксимации свойств огромного массива других систем и являются основой для расчета процессов ректификации и перегонки с помощью стандартизованных программ. Уже первые попытки расчета коэффициентов активности компонентов показали, что ставшие традиционными методы проверки и предсказания данных о равновесии жидкость — пар Редлиха — Кистера, Херинг-тона и т. п. к данной системе неприменимы, так как один компонент— вода, в широком диапазоне концентраций по своему поведению близок к идеальному, а другой — формальдегид — проявляет сильно отрицательные отклонения от идеального поведения [292, 293, 294]. Однако последующий анализ показал, что применение методов этого типа, основанных на сравнении свойств реального раствора с результатами расчета на основе закона Рауля, не вполне корректно. Поведение мономерного негидратированного формальдегида как вещества в чистом виде газообразного при всех температурах существования водных растворов в принципе не может подчиняться закону Рауля, поскольку растворимость газообразных веществ в жидкостях коррелируется законом Генри. [c.144]

    Пример П.З. Исходная углеводородная смесь, состоящая йз раствора 80 кмоль летучего компонента а (н-гентана, ЛГд=100) н 20 кмоль практи-ческп нелетучего тяжелого масла и> (ЛГш=400), подвергается постепенной перегонке при атмосферном давлешш и температуре 100,0 °С, при которой давление насыщенных паров к-гептана Рд=0,106124 МПа. Требуется найтп время, в теченце которого содержаппе летучего компонента в остатке перегонки понизится до 5 мол. %, еслп расход водяного пара составляет 20 кмоль/ч, эффективность =0,9, а коэффициент активности уа -гептана для условий перегонки можно принять равным единице. [c.82]

    Нефтью называется природная смесь углеводородов различных классов с различными сернистыми, азотистыми и кислородными соединениями. По внешнему виду нефть представляет собой маслянистую жидкость, обыкновенно бурого цвета, хотя встречаются нефти, имеющие более светлые оттенки коричневого цвета. Вязкость нефти различна и зависит от состава. Представляя собой смесь органических веществ, нефть способна гореть, выделяя при этом до 10 ООО калорий на килограмм. В минералогическом отношении нефть относится к числу горючих ископаемых или каустобиолитов. Нефть практически ие содержит химически активных веществ вроде кетонов, спиртов и т. п. соединений, хотя в некоторых случаях имеет кислотный характер вследствие незначительного содержания кислот. Все химические свойства нефти показывают, что нефть никогда не подвергалась действию высоких температур и поэтому для нее нехарактерны обычные компоненты, свойственные различным продуктам перегонки углей, торфа и других естественных горючих материалов. Нефть часто сопровождается в природе различными окаменелостями, позволяющими определить геологический возраст нефти в ее современном залегании. Обыкновенно нефть сонровояодается газом и водой, представляющей собой раствор галоидных и углекислых растворимых солей, иногда в воде содержатся сероводород и растворимые сульфиды. [c.5]

    Изменение состава раствора контролируют известными физическими или химическими методами, обеспечивающими требуемую точность. Во избежание трудностей аналитического определения очень малых концентраций предложено использовать метод радиоактивных индикаторов [13]. Для этого примесь, т. е. компонент, содержащийся в малой концентрации, следует пометить соответствующим радиоактивным изотопом. В случае органических веществ можно использовать углерод-14, тритий, хлор-36 или серу-35. Для разбавленных растворов измеряемая радиоактивность прямо нронор-циональна концентрации меченого компонента, т. е. хд1хц = Ао1А , где А ш Ац — измеряемая активность раствора до и после перегонки. Тогда вместо уравнений (1-43) и (1-44) можно записать для растворов более летучего компонента  [c.17]


    Анализ показал, что в осмоленном растворе содержится до 10 г/л связанной кислоты, предположительно муравьиной. Освобождение раствора этаноламина от коррозионноактивных компонентов путем перегонки раствора под вакуумом или добавление к раствору этаноламина щелочи снижает его коррозионную активность. Добавка щелочи из расчета 0,5 кг NaOH на 1 кг смолы исключает коррозию аппаратуры полностью [7]. Приведенные литературные данные о коррозионной стойкости материалов в условиях очистки промышленных газов этаноламинами далеко не полны. [c.52]

    Скорость растворения урана в чистом трифториде хлора ничтожно мала, так, например, при 30° G она равна 2,5 -10- моль Uj M - eK. Для растворения блочка металлического урана из хен-фордского реактора (диаметр 36,3 мм, длина — 100 мм) требуется примерно 1500 час. при 30° G и 90 час. при 80° G. Но она значительно возрастает в присутствии фтористого водорода. В растворе с молярным отношением GlFg HF = 0,3 1 при 80° G растворение блочков металлического урана типа хэнфорд проходит за 19 час. По окончания растворения реакционную смесь полностью перегоняли конденсат поступал в дистиллятор. При такой перегонке гексафторид урана очищался от целого ряда продуктов деления коэффициент очисти от -активности составлял lO — 10 , а от -активности — 10 . Дальнейшую очистку гексафторида урана от продуктов деления и отделение его от смеси трифторида хлора и фтористого водорода осуществляли в дистилляционной колонке. По сравнению с дистилляцией фторидов брома этот процесс сложнее из-за наличия в системе трех легколетучих компонентов — гексафторида урана, трифторида хлора, фтористого водорода (трифторид хлора и фтористый водород более летучи, чем UFg). [c.333]


Смотреть страницы где упоминается термин Растворы, активность компонента при перегонке: [c.116]    [c.121]    [c.77]    [c.170]    [c.5]    [c.170]    [c.170]    [c.5]   
Химическая термодинамика (1950) -- [ c.713 ]




ПОИСК





Смотрите так же термины и статьи:

Активность компонента раствора

Активность раствора

Активные в растворах

Активный компонент

Растворов компоненты



© 2024 chem21.info Реклама на сайте