Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроосаждение на активных точках

    Различные общеизвестные электроаналитические методы успешно использовались и в случае неводных растворителей. Другие представляют интерес с точки зрения применения к электроосаждению активных металлов. Na, Са, А1 и т. д., для чего обычно используют смеси расплавленных солей. Можно применять растворители типа форм-амида, ацетонитрила или этилендиамина, но их пригодность ограничена требованиями в отношении электропро- [c.117]


    Действие поверхностно-активных веществ при электроосаждении металлов довольно подробно изучено на примерах олова, кадмия и меди на этих опытах построены теоретические взгляды ряда авторов (см. 33). Что же касается электроосаждения цинка, то здесь найденные для других металлов закономерности оправдываются недостаточно и мы имеем пока только опытные данные - Последние говорят о том, что [c.270]

    Осаждение сплава медь — цинк затруднено тем, что стандартные потенциалы меди и цинка отличаются более, чем на 1 В. В настоящее время для получения электрохимического сплава медь—цинк предложены как комплексные, так и простые электролиты. Г сли при электроосаждении сплава из комплексных электролитов стремятся к сближению равновесных и катодных потенциалов путем изменения активности ионов, то при осаждении из растворов простых солей сближение достигается путем электроосаждения меди на предельном токе. В последнем случае, однако, удается получать осадки латуни толщиной до 1 мкм и только в присутствии ПАВ. [c.59]

    В последнее время был получен обширный экспериментальный материал по электрохимическим и физикохимическим свойствам адсорбционных слоев на металлах. При этом были использованы изменения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Поскольку в процессе электроосаждения металлов адсорбционные явления занимают особое место, то при рассмотрении влияния чужеродных частиц, адсорбирующихся на поверхности электрода, в процессе осаждения металлов необходимо учитывать соотношение скоростей осаждения и пассивирования металла. В случае, когда скорость осаждения металла больше, чем скорость адсорбции, поверхность металла неполностью покрывается чужеродными частицами. При этом электрохимическая реакция протекает только на активных участках электрода и ее скорость будет пропорциональна доле активной поверхпости. Если скорость адсорбции больше скорости осаждения металла, то поверхность электрода полностью закрывается частицами (пассивируется). Б этом случае скорость протекания электрохимической реакции лимитируется перенапряжением, обусловленным работой проникновения ионов металла через адсорбированный слой  [c.370]

    Так как при высокой поляризации металлические отложения получаются плотными и мелкозернистыми, то в технологии электроосаждения металлов, особенно в гальванотехнике, широко используются электролиты из комплексных солей, добавки поверхностно-активных и коллоидных веществ и другие условия, способствующие улучшению структуры катодных осадков. [c.340]


    Это различие в величине и механизме перенапряжения обусловливает, согласно Фольмеру, различный характер осадков, в виде которых нормальные и инертные металлы выделяются на катоде. Все факторы, вызывающие торможение акта разряда, должны, с этой точки зрения, уменьшать относительную роль кристаллизационных явлений и приводить к получению равномерных и мелкозернистых осадков. Увеличение торможения достигается или переводом простых ионов в более прочные комплексы, или при помощи добавок поверхностно-активных веществ (если их адсорбция больше всего сказывается на акте разряда). Изменение структуры осадков, наблюдаемое при переходе от простых электролитов к цианистым, а также характер электроосаждения в условиях адсорбционной поляризации подтверждают эту точку зрения. [c.435]

    Из этих величин ф-потенциалов следует, что в условиях электроосаждения никель имеет наиболее отрицательный заряд, за ним следует цинк, который также заряжен отрицательно, в то время как кадмий и свинец заряжены положительно. В ходе электровыделения на поверхности осадков никеля и цинка должны адсорбироваться преимущественно катионы, а на поверхности осадков-кадмия и свинца главным образом анионы. Эти выводы справедливы лишь для растворов, в которых нет поверхностно-активных ионов, способных адсорбироваться и на одноименно заряженной поверхности металла. Однако их можно распространить и на растворы, содержащие поверхностно-активные вещества, если только специфика адсорбции обусловлена особенностью их частиц, а не свойствами металла. Тогда, зная, как протекает адсорбция поверхностно-активных веществ хотя бы на одном из металлов, например на ртути, можно, используя приведенную шкалу, найти наиболее вероятную область потенциалов, в которой можно ожидать адсорбцию тех же самых веществ на поверхности любого другого металла. Это позволяет установить в каждом конкретном случае возможности [c.441]

    Из этих величин ф-потенциалов следует, что в условиях электроосаждения никель имеет наиболее отрицательный заряд, за ним следует цинк, который также заряжен отрицательно, в то время как кадмий и свинец заряжены положительно. В ходе электровыделения на поверхности осадков никеля и цинка должны адсорбироваться преимущественно катионы, а на поверхности осадков кадмия и свинца—главным образом анионы. Эти выводы, строго говоря, справедливы лишь для растворов, в которых нет поверхностноактивных ионов, способных адсорбироваться и на одноименно заряженной поверхности металла. Однако их можно распространить также на растворы, содержащие поверхностно-активные вещества, [c.498]

    Такую точку зрения подтверждают периодические колебания, наблюдаемые в отсутствие поверхностно-активных добавок при электроосаждении кадмия и цинка из щелочных растворов, в которых не происходит сильного развития поверхности электрода после достижения предельного тока (см. гистерезис на рис. 16). [c.63]

    Пассивирующее влияние таких лигандов, как нитрит и цианид, на процесс электроосаждения палладия дает основание считать, что пассивация поверхности катода является основным препятствием выделению различных металлов из комплексных электролитов. Достаточно обоснованно можно полагать, что с пассивированием активных участков поверхности электрода связаны характерные явления, наблюдаемые и в растворах простых солей металлов. На это указывают данные о катодной поляризации индия [276], хрома [45, 288] и других упомянутых металлов [153—157]. Возможно, что именно этой причиной обусловлена своеобразная зависимость катодной поляризации металлов от анионов применяемых солей [4]. Ведь если анионы могут приводить к пассивированию катода, образуя поверхностные соединения в комплексных растворах, то такое взаимодействие вполне вероятно и в растворах простых солей металлов. К сожалению, ограниченность используемой в электрохимических исследованиях методики не дает в настоящее время возможности определить состав и структуру пассивирующих соединений. [c.190]

    Если металл осаждается на катоде при потенциалах, близких к потенциалу нулевого заряда, то на нем в процессе электролиза сильно адсорбируются поверхностно-активные вещества молекулярного типа (спирты, кислоты, эфиры, альдегиды, кетоны). Если же осаждение металла происходит при потенциалах менее отрицательных, чем потенциал нулевого заряда, т. е. когда поверхность заряжена положительно, то в процессе электролиза на катоде будут адсорбироваться преимущественно вещества анионного типа (тиомочевина). Когда же металл осаждается при потенциалах, более отрицательных по сравнению с потенциалом нулевого заряда, на отрицательно заряженной поверхности катода при электроосаждении будут адсорбироваться поверхностно-активные вещества катионного характера (трибензиламин, тетрабутиламмоний, уротропин). Таким образом, в зависимости о.т потенциала нулевого заряда металла и потенциала осаждения, а следовательно, от природы металла и природы электролита, адсорбция одних и тех же поверхностно-активных соединений может быть различной. [c.112]


    В литературе имеется довольно много работ, в которых исследуется адсорбция поверхностно-активных веществ в зависимости от потенциала. Большинство этих данных получено методом электрокапиллярных или емкостных кривых на ртутном электроде. Так, М. А. Лошкаревым [25] при изучении электроосаждения олова было показано, что в той области потенциалов, где разряд ионов олова сильно затруднен, происходит адсорбция поверхностно-активных веществ, а при некотором отрицательном потенциале, когда катодная реакция облегчается, поверхностно-активные вещества десорбируются с поверхности электрода. [c.112]

    Поляризующее действие подкладки. При изучении электроосаждения серебра было показано, что скорость протекания электрохимической реакции на отдельных участках электрода весьма различна, так как поверхность электрода, как правило, неоднородна она состоит из активных и пассивных участков [23]. На активных участках электрода процесс восстановления ионов металла протекает с большой скоростью, в то время как на пассивных участках скорость весьма замедлена [24]. При изучении скорости электрохимической реакции на поверхности электродов разных металлов было показано, что в зависимости от природы металла и природы восстанавливающегося иона пассивирование электрода происходит с различной скоростью [25]. [c.186]

    Следует отметить, что при определении сцепляемости электрохимическим методом необходимо обратить внимание на следующее обстоятельство. Как уже указывалось, необходимо чтобы весь поляризующий ток расходовался на разряд ионов основного металла. Возможность протекания на электроде других восстановительных реакций в начале электролиза, в частности при электроосаждении таких металлов, выделение которых происходит значительно отрицательнее потенциала водородного электрода, исключает применение электрохими-, ческого метода. Так, если поверхность электрода покрыта по-верхностно активными веществами, которые при поляризации легче восстанавливаются, чем ионы металла, то поляризация не будет уменьшаться во времени и значение ее не будет характеризовать величину активной поверхности и, следовательно, сцепляемость. Если же поверхность металла окислена и окислы легче восстанавливаются, чем ионы метал- ла, то при включении тока также не будет наблюдаться скачка [c.333]

    Очевидно также и то, что сцепляемость электролитических осадков с подкладкой связана с величиной активной поверхности электрода в начале электролиза. Действительно, при электроосаждении никеля было обнаружено, что после кратковременной анодной поляризации блеск никелевых осадков временно ухудшается, как в описанном выше случае с тиомочевиной, что свидетельствует о неравномерном осаждении металла при повторном включении тока (рис. 159). Проверка сцепляемости механическим способом показала, что при этом происходит резкое ухудшение сцепляемости, вплоть до отслаивания слоев никеля, осажденных после анодной поляризации. [c.344]

    Механизм выглаживания поверхности электрода во время электроосаждения металла в присутствии поверхностно-активных веществ недавно получил убедительное объяснение [252, 253]. Оно основано на следующих фактах. Во-первых, в ряде случаев было доказано, что вещество добавки включается в осадок в заметных количествах. Во-вторых, перенапряжение выделения металла растет с увеличением концентрации возле электрода тех веществ, которые используются в качестве выглаживающих добавок к электролиту. При осаждении никеля из никелевой ванны, содержащей М кумарина, при плотностях тока больше 10 а/см было количественно показано, что на вращающемся дисковом электроде поляризация возрастает, или, что то же, сила тока нри постоянном потенциале электрода падает с увеличением скорости перемешивания (рис. 52). Так как возле выступающих мест электрода перемешивание лучше, чем возле впадин, то выглаживаю- [c.123]

    Температура электролита. Повышение температуры электролита так же, как и перемешивание, способствует интенсификации процесса электроосаждения металлов. При нагревании электролита возрастают катодный и анодный выходы по току (устраняется пассивирование анодов), увеличивается растворимость солей металлов и электропроводимость растворов, улучшается качество осадков вследствие снижения внутренних напряжений. В ряде случаев при комнатной температуре компактные, доброкачественные осадки вообще не образуются (станнатные) или качество осадков существенно ухудшается (пирофосфатные электролиты), поэтому электролиты нагревают до 50—80 °С. При этом появляется возможность работать при более высоких плотностях тока. Вместе с повышением температуры обычно снижается катодная поляризация, а в этих условиях скорость роста кристаллов преобладает над скоростью возникновения активных, растущих кристаллов, что должно приводить к образованию крупнозернистых и более пористых осадков. В то же время в горячих электролитах можно значительно увеличить допустимую плотность тока и как бы нейтрализовать отрицательное влияние температуры на структуру осадков. [c.252]

    Для пленкообразователей полиэлектролитного типа солевые группы, способствующие диссоциации в водном растворе, должны быть переведены в кислотную (для полианионных материалов) или основную (для поликатионных) форму. В качестве солеобразующих агентов используют азотсодержащие основания или органические кислоты и ортофосфорную кислоту, которые обладают меньщей коррозионной активностью по сравнению с минеральными кислотами. Основные характеристики нейтрализующих агентов приведены в приложении (табл. 5). Если при нанесении покрытия методом электроосаждения регенерация ионогенных групп достигается непосредственно при осаждении пленки из раствора на поверхности, то при нанесении такими методами, как распыление, окунание и другие, разрущение солевых групп с удалением солеобразующего соединения может эффективно происходить только при нагревании. Этим определяется в большинстве случаев нижний температурный предел отверждения водорастворимых материалов. [c.103]

    Таким образом, для чистого сопротивления величины F и i совпадают по фазе. В то же время для емкости ток опережает напряжение на тг/2 рад (90°), а для индуктивности отстает от напряжения на ту же величину. За исключением активных биологических систем, таких как аксоны нервных клеток (см,, например, [54, 61, ПО]) и некоторых электрохимических систем, особенно тех, где наблюдается коррозия и электроосаждение [80, 83, 137], индуктивность, как правило, незначительна, поэтому в дальнейшем мы будем ею большей частью пренебрегать. Следовательно, интуитивно можно представить себе (и это оказывается верно), что для реальной системы, обладающей как омическими, так и емкостными свойствами (т.е. ведущей себя как конденсатор с утечкой), 0 принимает значения между О и тг/2, как показано на рис, 24.1,6, [c.346]

    Поверхностно активные вещества, присутствующие в растворе, влияют не только на скорость электрохимического процесса, но и на структуру катодных отложений. А. Т. Баграмян при электроосаждении серебра наблюдал явление катодной пассивности граней растущего кристалла. Это явление зависит от присутствия в растворе посторонних ПАВ и исчезает при очень тщательной очистке раствора от органических примесей. При концентрировании на поверхности органических веществ в относительно больших количествах нормальный рост грани затрудняется. Продолжение роста становится возможным при повышении потенциала до значения, при котором возникают новые кристаллические зародыши. Если часть поверхности остается незапассивированной, то в этом случае повышение эффективной плотности тока ведет к увеличению перенапряжения. [c.381]

    В начальный период этого цикла исследований основное внимание было обращено на выяснение роли адсорбции в процессах ингибирования. На основании концепции приведенной шкалы потенциалов было показано, что при коррозии металлов ингибирующее действие органических веществ меняется симбатно с их поверхностной активностью на ртути, если все эти измерения проведены при одинаковых ф-потенциа-лах, т. е. при одинаковых зарядах поверхности металла. Этим был доказан адсорбционный механизм действия большинства органических ингибиторов и внесен рациональный элемент в поиски вероятных ингибиторов. Было введено понятие о специфической адсорбции I и II родов. Специфическая адсорбция I рода определяется природой адсорбирующихся частиц природа металла здесь проявляется главным образом через его нулевую точку. Это позволило на основании адсорбционных измерений, проведенных на одном металле, предвидеть адсорбционное поведение того же вещества на других металлах. Так, в частности, оказалось возможным, используя приведенную шкалу, оценивать области потенциалов, внутри которых на данном металле следует ожидать адсорбцию и влияние органических веществ на коррозионные и другие электрохимические процессы. Подобный же подход был впоследствии плодотворно использован и в работах Лошкарева по электроосаждению металлов. Недавно в работах московских и тартусских электрохимиков были получены результаты, дающие экспериментальное качественное подтверждение этой концепции. Следует, однако, подчеркнуть, что она оправдывается для оиределенной, хотя и широкой группы ингибиторов (азотсо- [c.135]

    Потеюдиал нулевого заряда железа. Потенциал нулевого заряда металла отвечает отсутствию ионного скачка потенциала между поверхностью металла и толщей раствора [63]. Знание потенциалов нулевого заряда позволяет оценить кинетику процессов, протекающих на электродах при электроосаждении и анодном растворении металлов и сплавов, является необходимым условием при определении той области потенциалов, в которой можно ожидать адсорбцию поверхностно-активных молекул на поверхности металла. К числу работ, в которых учитываете потенциал нулевого заряда металла, следует отнести исследования процессов ектровосстановления анионов [П5] и иссждования в -области теории и практики злектроосаждения сплавов [Пб]. Поэтому определение точ-ных величин потенциалов нулевого заряда металлов группы желе- [c.41]

    В качестве следующего примера рассмотрим работу Сейлера и Свита 22] по электровесовому определению кобальта в стали и других сплавах. Причиной, вызвавшей применение в данном случае метода изотопного разбавления послужило то, что кобальт, осажденный на аноде в виде С02О3, склонен образовывать плохо пристающий слой а это мешает использовать обычный метод весового определения, однако при изотопном разбавлении потеря частичек окиси во время промывки и сушки не имеет значения. При этом возможны другие упрощения, как, например, замена количественного фильтрования и промывки цен-трифугованием. Для анализа подготавливается калибровочная кривая, аналогичная изображенной на рис. 14.8, путем добавления равных частей Со ° к образцам, содержащим различные количества чистого кобальта, п последующего электроосаждения С02О3 в стандартных условиях. Немедленно после растворения анализируемого образца к нему добавляют порцию Со °. Для удаления элементов, которые мешают электролизу, проводится химическая обработка. После этого кобальт осаждают, осадок взвешивают и определяют его активность. Количество кобальта в исходном образце определяют с помощью калибровочной кривой. Среднеквадратичное отклонение изменяется от 0,005 до 0,025%. [c.224]

    Теоретическая сторона вопроса об электроосаждении рения из водных растворов подробно рассмотрена О. А. Суворовой [65—67]. На основании большого экспериментального материала исходя из теории замедленного разряда и диффузионной кинетики О. А. Суворова показывает, что механизм электровосстановления рения тесно связан с механизмом восстановления водорода и выводит ряд уравнений, позволяющих количественно оценивать влияние отдельных факторов и их взаимоотношения на процесс выделения металла (рения). К этим факторам относятся концентрации (активности) перрената и водородных иоиов, перенапряжение для выделения рения и водорода на рении, скорость подвода перрената и ионов водорода к электроду (коэффициенты диффузии), плотность тока, при которой ведется процесс, или, точнее, потенциал, обусловливающий данную плотность тока. Так как воостановление перренат-иона идет с обязательным участием водорода (как и других кислородсодержащих ионов), то последний должен присутствовать не только в избытке, обеспечивающем воостановление перрената, но и Б значительно большем количестве, так как часть ионов водорода восстанавливается на электроде бесполезно , не участвуя в восстановлении перрената. Это легко объясняется низким перенапряжением выделения водорода на рении. Поэтому при электролитическом восстановлении рения никогда не удастся получить высокий выход рения по току. Можно было бы играть на отношении концентраций перрената и ионов водорода, однако качество получаемых осадков также связано с соотношением между концентрациями перрената и водорода если при повышении концентрации перрената не повысить концентрации Н" ", то образуются черные осадки , т. е. осадки не металлического рения, а его окислов. Повышение концентрации Н+ приведет к выделению металла, но одновременно резко понизится выход рения по току, так как на электроде будет преобладать выделение водорода. Наиболее благоприятные условия для практического осуществления процесса создаются, как указывает О. А. Суворова, при отношении концентраций (аетивностей) НеОГ Н+ - 1 2,5 - 3. [c.36]

    В процессе осаждения И—40 а/дм ) перекисное титановое соединение восстанавливается водородом, выделяющимся на катоде, до гидроокиси титана (1). Эта гидроокись, осаждающаяся с кадмием на катоде, является очень активной и также будет восстанавливаться водородом по реакциям (2) — (4) до тех пор, пока не начнет осаждаться титан, способный давать с кадмием сплав. Из приведенных реакций видно, что в процессе электроосаждения на восстановление одного атома титана требуется восемь атомов водорода. Такой большой расход водорода и является одной из причин снижения наводороживания стали. Другой причиной уменьшения наводороживания, по мнению авторов, является то, что из-за химического сродства титана к водороду титан будет ускорять реакцию молизации Н + Н- Нг Исследования, проведенные с помощью метода Лоуренса, а также статические испытания разрывных образцов показали, что электроосаждение из цианистых растворов, содержащих пертитанаты, приводит как к снижению наводороживания стали, так и к уменьшению времени прогрева, необходимого для полного восстановления механических свойств стали. Анализ электроосадков показал, что в покрытиях содержится 0,2—0,34% титана. [c.206]

    Взгляды Лайонса в какой-то мере отражают некоторые особенности, свойственные процессам катодного выделения металлов. Несомненно, что известная роль в этих процессах должна быть отведена особенностям электронного строения ионов. В то же время теория Лайонса не истолковывает полностью природу процессов электроосаждения металлов. Прежде всего это связано с отсутствием надежных данных о строении ионов в растворе и на поверхности электрода, что заставляет прибегать к помощи гипотетических структур. Далее, теория Лайонса, даже при использовании подобных структур, не в состоянии объяснить некоторые опытные закономерности, относящиеся, нацример, к выделению металлов платиновой группы. В его теории не учитывается влияние величины потенциала электрода и строения двойного электрического слоя на процесс электроосаждения металла. Наконец, она не может объяснить ту роль, какую играют в этом процессе состав раствора и особенно поверхностно-активные вещества. Дальнейшее развитие представлений о роли структуры разряжающихся металлических ионов при электроосаждении металлов было дано Вылчеком (1957 г.). [c.438]

    Зивом, Суходоловым, Фатеевым и Ласточкиным [ Ч было подробно изучено электроосаждение свинца из азотнокислых растворов на платиновых и золотых электродах в интервале концентраций свинца от 10 до 10 н. В качестве радиоактивного индикатора употреблялся ТЬВ. Измерение активности производилось после установления равновесия в системе ТЬВ—ТЬС. Результаты представлены па рис. 243 и 244. Ход кривых аналогичен кривым для выделения висмута на золоте с той, однако, раз- [c.534]

    При работе со стационарными электродами преимущество нормальной импульсной полярографии проявляется еще и в том, что при соответствующем подборе Ео на электроде за время может протекать электрохимическая реакция. Обратная той, которая протекает за время т. В таких случаях эффект электропревращения (например, эффект электроосаждения металлов из растворов) должен проявляться а НИП в меньшей степени, чем в тех случаях, когда за время /в электрохимическая реакция на электроде не протекает. Малая степень электропревращения вещества позволила, например, определить при работе с СРЭ 10 AI концентрации галогенидов в раСплаве нитратов щелочных металлов [135]. НИП этих расплавов имели хорошо выраженную форму, а классические полярограммы искажались из-за низкой растворимости галогенидов ртути в расплаве. При регистрации НИП произведение активностей ионов галогенидов и ионов ртути в расплаве не достигало произведения растворимости. [c.72]

    Присутствие ацетата свинца оказывает существенное влияние на электроосаждение платины, возможно вследствие увеличения зернистости [30, глава 3]. Платиновая чернь из растворов, не содержащих свинца, осаждается плохо и неровно. В ряде случаев присутствие следов свинца на поверхности электрода нежелательно. Хиллс и Айвес [31] установили, что электроды, которые платинировались в 2% растворе хлорида платины в 2 М НС1 в течение 2 мин при плотности тока 20л1а/слг2, являются удовлетворительными. Несмотря на высокую активность, эти электроды были не черными, а покрытыми тонкой серой или золотистой пленкой. [c.219]

    Органические вещества, прочно адсорбирующиеся на новерхности и тем самым мешающие протеканию на ней электрохимических процессов, как говорят, отравляющие поверхность, могут влиять на процессы электроосаждения тремя путями. Если заполнение поверхности большое и скорость адсорбции или поверхностная подвижность молекул органического вещества велика по сравнению со скоростью обновления поверхности из-за осаждения металла, то ионам приходится разряжаться только на поверхностп, уже отравленной, т. е. покрытой адсорбированным слоем. Нри этом можно ожидать значительного повышения перенапряжения процесса электроосаждения. Бывают случаи, когда нри разряде металлических катионов (например, цинка) присутствие адсорбирующихся соединений, наиример алифатических спиртов или четырехзамещенных аммониев [62, 63, 245], вызывает уменьшение плотности тока в сотни и тысячи раз. Действие поверхностно-активных веществ, описанное в разделе 5, можно формально охарактеризовать тем, что они создают дополнительный потенциальный барьер внутри двойного электрического слоя. Адсорбция в этом случае существенно не меняет механизм разряда катионов. [c.121]

    Блестящие осадки никеля состоят из округлых кристаллов малых размеров, не имеющих ясно выраженных граней. При электроосаждении в электролитах с блескооб-разователями радиус этих округлостей возрастает, что способствует увеличению блеска. Что же касается причин образования на катоде блестящих электролитических осадков, то образование на катоде блестящих электролитических осадков связано с наличием на поверхности катода пленки, часто коллоидного типа, которая играет определенную роль в подводе разряжающихся ионов к поверхности электрода (так называемый диффузионногидродинамический фактор). Такая пленка образуется лишь при введении в электролит определенных по-верхностно-активных веществ. В некоторых случаях добавки поверхностно-активных веществ являются стабилизаторами пленки, образующейся на поверхности катода при прохождении тока (например, выпадение гидроокиси никеля при электролизе никеля). [c.127]

    Хотя смачивающие вещества и снижают размеры микрокрисгалли-1 ов никелевого покрытия, они не приводят к образованию покрытий, которые обладали бы достаточным блеском и не требовали бы дополнительной полировки. Такие покрытия получаются путем введения в состав ванн специальных веществ, содействующих, повидимому, ориентации микрокриста.члитов в отложившемся слое. Поэтому смачивающие вещества нашли применение в гальванических ваннах для получения блестящих металлических покрытий лишь в качестве добавок, устраняющих образование пор в осадке благодаря облегчению отрыва пузырьков водорода, выделяющихся на катоде. Таким образом, лучшими присадками к ваннам для никелирования являются те из них, которые значительно снижают поверхностное натяжение и полностью растворяются в ванне, а также являются вполне устойчивыми в условиях происходящих в последней химических и электролитических процессов. Чаще всего для этой цели рекомендуются алкилсульфаты, алкиларилсульфонаты и игепоны 17). Поскольку гальванические ванны иногда используются в течение длительных промежутков времени, причем одна и га же ванна может применяться для электроосаждения в различных условиях, то в этих случаях требуется извлекать смачивающее вещество из ванны, не нарушая состава всего раствора. Это осуществляется путем избирательной адсорбции на активном угле или глине [18]. [c.465]

    Промывка [83—92]. Между всеми стадиями нанесения покрытия (очистка, травление, электроосаждение, обработка после нанесения) деталь должна промываться. Если удален гидрофобный слой, то поверхность металла, извлекаемого из растворов, имеет пленку влаги. Потери раствора таким путем наносят название унос электролита из ванны деталями . Пленка толщиной 10 мкм является минимальной, которая удерживается на гладких вертикальных поверхностях, после стекания избытка. На шероховатых и горизонтальных поверхностях и во впадинах на поверхности пленка раствора может быть гораздо толще, так же как и в случае применения вязких растворов. Во время промывания пленка жидкости разбавляется и отнощение конечной концентрации к начальной носит название коэффициента разбавления . Разбавленное вещество переносится далее на следующую стадию обработки. Очевидно, что максимальная концентрация загрязнений, допустимая в последующем процессе, определяет максимально допустимое значение коэффициента разбавления. Иногда существует необходимость в том, чтобы коэффициент разбавления превышал некоторое минимальное значение. Между операциями электроосаждения никеля и хрома необходимо, чтобы промываемая поверхность металла не становилась пассивной. В этом случае длительная промывка опасна с точки врения устранения слабой (но имеющей большое значение) коррозии, которая поддерживает поверхность между указанными стадиями в активном состоянии. [c.347]

    Электроосажденный хром как в виде декоративного, так в виде твердого покрытия наносится при использовании растворов хромовой кислоты, содержащей небольшое количество катализатора, обычно в виде серной кислоты, хотя кремнийфтористово-дородная или борфтористоводородная кислота также может быть использована. Типичный электролит содержит 250—400 г/л хромовой кислоты и 2,5—4,0 г/л серной кислоты. Отношение СгОз S04 =100 1 имеет важное значение и для удовлетворительного протекания процесса покрытия должно поддерживаться постоянным. Если содержание катализатора слишком низкое, то металл не будет осаждаться, если слишком высокое, то рассеивающая способность будет значительно понижена. Катодная эффективность составляет обычно только 10— 12%, хотя может достигать 20% при использовании кремнийфтористоводородного катализатора. Образующийся водород на катоде и кислород на аноде (6%-ный сплав свинца с сурьмой, который может покрываться перекисью свинца) при электроосаждении хрома необходимо удалять путем экстракции или создания повышенного давления в пузырьках при помощи специальных добавок поверхностно активных веществ типа полностью фторированных углеводородов, известных как соединения, [c.446]

    Многие добавки сами по себе являются смесями неизвестного состава. Даже в случае ванн с комплексными солями часто с успехом используются добавки кофеин, например, встречается в некоторых рецептах для цианистых кадмиевых ванн. Более чем одна точка зрения имеется в отношении действия добавок, но это действие, вероятно, связано с адсорбцией добавки на активных участках растущих кристаллов, где иначе должно было бы происходить осаждение, так что рост прекращается и осаждение начинается в другом месте. Во многих случаях добавки могут включаться в осадок. Составные части некоторых ванн, которые обычно не называются до(5авками, действуют аналогичным путем. Классическая работа (стр. 597) по электроосаждению никеля показала, что небольшие количества окисла или основной соли, включенные в осадок, могут уменьшить число мест зародышей кристаллизации и влиять на твердость. Если значение pH контролируется так, что имеет место достаточное количество основного вещества, то можно получить мелкодисперсный осадок и устранить риск укрупнения зерен при отжиге. Многие добавки обладают заметным сглаживающим эффектом, так что поверхность после осаждения действительно более гладкая, чем исходная поверхность непокрытой детали. Это ценное свойство изучено количественно Ватсоном и Эдвардсом, которые приняли за стандартную поверхность микро-канавки матрицы , используемой в производстве грамофонных пластинок. Если раствор содержал сглаживающую добавку, то глубина канавок уменьшалась по мере того, как происходило осаждение. Различие между средней глубиной канавки до и после осаждения, поделенное на среднюю толщину осадка, принято за меру сглаживающего действия. В ваннах для никелирования тиомочевина дает высокое сглаживающее действие, но этилиодид хинолина и кумарин, обладающие худщим сглаживающим свойством дают блестящие осадки. Во всех случаях количество добавки должно быть ограничено. Если количество добавки слишком мало, сглаживающее действие низко (иногда отрицательно) и осадок тусклый, если количество добавки слишком велико, сглаживающее действие также низко и осадок тусклый, иногда темный и хрупкий. Проведенные исследования достаточно ясно объяснили и причину сглаживания. Было найдено, что органические вещества включаются в осадок на выступах, где имеется более свободный доступ и обмен электролита, и во много меньшей степени в металл, осаждающийся в канавках. Поскольку органические соединения препятствуют осаждению (без сомнения за счет адсорбции на наиболее благоприятных местах), в конечном счете осаждение в канавках будет более интенсивным, чем в других местах. Эта выдающаяся работа заслуживает изучения [30]. ) [c.558]


Смотреть страницы где упоминается термин Электроосаждение на активных точках: [c.467]    [c.331]    [c.165]    [c.195]    [c.499]    [c.500]    [c.331]    [c.61]    [c.207]    [c.16]    [c.234]   
Электрохимия металлов и адсорбция (1966) -- [ c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Электроосаждение



© 2025 chem21.info Реклама на сайте