Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикалы оболочек

    Одной ИЗ разновидностей метода молекулярного щупа является анализ гомологических рядов.- Для оценки размеров гидратной оболочки такой анализ впервые использовался в работе Эверта [150]. В качестве щупа здесь используется алифатический радикал, присоединенный к исследуемой атомной группе. Анализируемыми гидратационными характеристиками могут быть парциальный молярный объем, сжимаемость, теп- [c.48]


    Наблюдающаяся высокая химическая активность )адикалов обусловлена незаполненностью их электронных оболочек. Характерна аналогия между химическими свойствами гидридов углерода, азота, кислорода и фтора и химическими свойствами атомов с тем же числом электронов. Так, радикал СН (метин) является химическим аналогом атома Н, радикалы СНа (метилен) и NH (имин) — аналогами атома О, радикалы СН3 (метил), НН2 (аминогруппа) и ОН (гидроксил) — аналогами атома К и, наконец, молекулы СН4, N1 3, Н2О и НГ в известном смысле (инертность) аналогичны атому N6. Благодаря химической ненасыщенности радикалов энергия активации нроцессов, протекающих с их участием, имеет порядок величины энергии активации атомных реакций. Поэтому такие процессы, как правило, идут приблизительно с такой же скоростью, с какой идут атомные процессы. [c.34]

    Молекула На. Электронная конфигурация молекулы Н2 в основном состоянии Нг Ь), молекулярный терм (дублет сигма). Единственный электрон молекулы на ag связывающей орбитали обеспечивает химическую связь. Молекула Нг — свободный радикал. Радикалами называют частицы с открытыми оболочками. Радикальный характер молекулы Нг легко обнаруживается по ее парамагнетизму, обусловленному только спином электрона, так как орбитальный магнитный момент молекулы равен нулю. Другие свободные радикалы также парамагнитны. В молекуле Нг между единственным электроном и ядрами нет экранирующих электронов, поэтому она характеризуется самым высоким значением ПИ = 16,25 эВ и СЭ = = 15,4261 эВ, намного превышающим СЭ других молекул. [c.75]

    Таким образом, разрыв ковалентной связи для получения двух нейтральных соединений всегда должен дать два радикала, каждый со свободной валентностью и обладающий активностью свободного радикала. Разрыв ионной связи может дать либо два иона с заполненными оболочками, имеющими только электростатический поляризующий момент (MgO = Mg + + О ), либо два иона, один из которых (обычно катион) также имеет электрон с непарным спином и поэтому имеет дополнительные свойства, присущие радикалу (например, NiO = NiO +0 -). Молекулы веществ, образующих твердые поверхности, дегазированные в вакууме, обладают множеством свободных связей, по которым могут идти реакции с молекулами газовой фазы (хемосорбция) с образованием различных поверхностных комплексов- Очевидно, что каталитическое действие твердого вещества зависит от составляющих его лептонов. Раньше исследователи связывали высокую каталитическую активность с переменной валентностью, цветом, магнитными свойствами и т. д. Сравнительно недавно метод электронной проводимости стал доминирующим в определении их свойств. Он лучше отражает электронную структуру оболочек на основе периодической системы, хотя дает лишь общую характеристику, которая не может заменить результатов, получаемых при детальном изучении химии и физики исследуемых твердых тел. [c.20]


    Действительно, в целом система молекула+радикал имеет нечетное число электронов, и какая-либо из частиц, образовавшихся в результате их взаимодействия, неизбежно будет иметь нечетное число электронов, т. е. будет обладать свободной валентностью (речь идет, конечно, о молекулах, атомы которых не имеют незаполненных /-оболочек). Поэтому если в системе образовался свободный радикал, то он не исчезнет иначе, как при захвате стенками сосуда или при встрече с другим свободным радикалом. Поскольку свободные радикалы, как правило, присутствуют в реагирующей системе н небольших концентрациях, то вероятность встречи их друг с другом сравнительно мала. Значительно более вероятно столкновение и взаимодействие свободного радикала с молекулой какого-либо из реагирующих веществ. В результате этого взаимодействия снова образуется свободный радикал, который может вступить в реакцию с новой молекулой и т. д. Иными словами, один свободный радикал может вызывать длинную цепь превращений. В этом случае возникает так называемый цепной процесс. [c.22]

    Действительно, в целом система .молекула + свободный радикал имеет нечетное число электронов, и какая-либо из частиц, образовавшихся в результат е их взаимодействия, неизбежно будет иметь нечетное число электронов, т. е. будет обладать свободной валентностью (речь идет, конечно, о молекулах, атомы которых не имеют незаполненных -оболочек). Поэтому, если в системе образовался свободный радикал, то ои может исчезнуть только [c.19]

    Детальное ознакомление с работами [21, 631 показывает, что полученное значение не вызывает сомнений. Можно предположить, что радикал СН2, образующийся из возбужденной молекулы СН обладает иными свойствами, чем предполагали ранее. При диссоциации СН4 отрыв атомов, связанных с углеродом, сопровождается изменением состояния электронной оболочки последнего, в результате чего [64, 651 образуется возбужденный радикал СНг, в котором атом углерода четырехвалентен и находится в состоянии гибридизации зр-орбит. В нормальном же или невозбужденном радикале СН2 атом углерода двухвалентен и находится в состоянии гибридизации орбит. [c.219]

    Надо отметить, что протон Н (гидрид-ион, гидрид-радикал Н ) характеризуется исключительно высокой реакционной способностью, что объясняется отсутствием у него электронной оболочки. Гидрид-ион - единственный катион, не имеющий электрона. Диаметр Н примерно в Ю раз меньше диаметра любого другого катиона. [c.428]

    Время жизни свободного радикала, как будет показано в данном разделе, в гораздо большей степени зависит не от степени делокализации неспаренного электрона, а от стерического экранирования радикального центра объемистыми заместителями, препятствующими реакциям радикалов между собой, с растворителем, кислородом воздуха или другими субстратами с заполненной или незаполненной электронной оболочкой. Важность стерических препятствий свидетельствует о том, что понятие стабильность радикала относится главным образом не к термодинамическим (например, энергия разрыва связи С-Н), а к кинетическим свойствам, т.е. к скорости реакций, в которых радикал гибнет. [c.502]

    Разрывы связей между атомом углерода и гетероатомом часто используются для получения свободных органических радикалов. Эти разрывы осуществляются чаще всего с помощью металлов, способных к отдаче одного из неспаренных электронов с внешней электронной оболочки. Принято считать также, что галоидные производные превращаются в металлоорганические соединения с промежуточным образованием свободного радикала со свободной валентностью у атома углерода (а). [c.375]

    Некоторыми исследователями сделан вывод о возможности стабилизации эмульсий ненасыщенными слоями стабилизатора, представляющими собой подобие двумерного газа из ориентированных дифильных молекул. Ненасыиденность таких слоев, имеющая место и в латексных системах дала повод в данном случае усомниться в стабилизирующем действии структурно-механического фактора, тем более, что проведенные измерения не показали наличия структурной и даже просто повышенной вязкости оболочек из поверхностно-активных веществ на межфазной границе. Кроме того, показано, что стабильные эмульсии могут быть получены при помощи эмульгаторов (некаль, триэтаноламин), заведомо не способных давать механически прочные адсорбционные пленки. И, наконец, если бы устойчивость эмульсий обуславливалась только структурно-механическим фактором, невозможно было бы наблюдаемое в ряде экспериментов соблюдение известного правила электролитной коагуляции Шульце—Гарди. С. М. Леви и О. К. Смирновым обнаружено отсутствие в широких пределах связи между длиной углеводородного радикала молекулы эмульгатора и стабильностью коллоидной системы, что также говорит против объяснения устойчивости эмульсий только образованием на поверхности глобул механически прочного адсорбционного слоя. [c.12]


    На основании представления о гибридизованных АО углерода субстрата, реагента и активированного комплекса Витвицкий 1242] предложил метод количественной оценки энергии активации реакций (15.1). Проще всего этот метод проиллюстрировать на примере реакции Н(1) + К(2)Н- К(1)Н К(2) + (3, в которой реагирующий атом углерода исходного радикала находится в гибридном р -состоянии, а атом углерода исходной молекулы — в состоянии 5р . Для отрыва Н-атома от 5/7 -гибридизованного атома углерода субстрата необходимо, чтобы валентная оболочка этого атома перешла в 5р -гибридизованное состояние, что требует затраты 57,5 кДж-моль- 1242]. Поэтому с учетом теплоты реакции энергетический барьер, который должна преодолеть исходная система, равен [c.154]

    Важным шагом в сторону выявления ука 5анных аналогий было введение концепции электроноэквивалентных групп, т. е. групп, центральному атому которых недостает одинакового числа электронов до полного заполнения валентной электронной оболочки. В этом смысле электроноэквивалентными являются, например, атом С1, радикал СНз и Мп2(СО)5, дающие устойчивые димеры С1г, [c.352]

    Энергией ионизадни Е атома (молекулы, радикала) называется наименьшая энергия, необходимая для отрыва электоона от атома (мо лекулы, радикала), находящегося в нормальном (иевозбуждеииом) состоянии. Энергия отрыва от атома первого, второго, третьего и т. Д. электронов ( 1, Е , з ) последовательно возрастает, особенно резко —при переходе к более глубоко расположенным электронным слоям (оболочкам). [c.24]

    Представляет собой два находящихся в одной электронной оболочке. Принимая во внимание химические свойства псрекнсе и то, что перекисиый радикал ведет себя как однородный хромофор, Ледерле и Рихе предполагают, что связь между кислородными атомами вероятнее всего осуществляется при помощи нескольких электронных пар. [c.119]

    Свободные радикалы, как и катионы, являются электронодефицитными частицами. Поскольку алкен может предоставить свои я-электроны для вавершепия внешней электронной оболочки радикала, закономерна атака радикалами я-системы двойной связи. < [c.323]

    МЕХАНИЗМ РЕАКЦИИ. Понятие используется в осн. в двух смыслах. Для сложных реакций, состоящих из неск. стадий, М. р. -это совок>иность стадий, в результате к-рых исходные в-ва превращаются в продукты. Для простой р-ции (элементарной р-ции, элементарной стадии), к-рая не может быть разложена на более простые хим. акты, выяснение М. р. означает идентифицирование физ. процессов, составляющих сущность хим. превращения. Для одной частицы (молекула в основном или возбужденном состоянии, ион, радикал, диффузионная пара, синглетная или триплетная радикальная пара, комплекс) или двух (редко трех) частиц (молекул, ионов, радикалов, ион-радикалов и т. п.), находящихся в определенных квантовых состояниях, изменения в положениях атомных ядер и состояниях электронов составляют суть их превращений в другие частицы с присущими этим частицам квантовыми состояниями. В рассматриваемые фнз. процессы часто включают в явном виде акты передачи энергии от частицы к частице. Для элементарных реакций в растворе М. р. включает изменения в ближней сольватной оболочке превращающихся частиц. [c.74]

    Запишите электронную формулу радикал-иона SO3. Какие из перечисленных ниже радика.г10в и молекул имеют идентичное строение валентной электронной оболочки NOJ, СО -, 10J, SeO , AsO , N I3, BF3. [c.126]

    Возможность растворения щелочных металлов в неполярных или мало-полярных ароматических углеводородах была показана Леном и др, [202, 203]. При действии раствора дициклогексцл-18-краун-б в бензоле или толуоле на тонкую пленку кадия происходило растворение металла, и раствор окрашивался в темно-синий цвет, В УФ-спектрах этих растворов (- 70°С, ДМЭ) наблюдалось такое же поглощение в области 300 и 400 нм, как и в случае бензольного анион-радикала в тех же условиях. Наблюдаемая сверхтонкая структура ЭПР-спектров этих растворов соответствовала анион-радика-чам бензола (7. линий) и толуола (5 линий), как показано на рис, 3,28, Эти результаты позволяют предположить, что ион К" , образующийся в результате отрыва электрона с внешней оболочки атома, связывается краун-эфиром. [c.156]

    Эти данные наводят на мысль, что в результате переноса электрона с внешней оболочки атома щелочного металла на низшую свободную орбиталь ароматического углеводорода образуется анион-радикал ароматического углеводорода А . Однако А существует в виде свободного иона или в виде непрочной ионной пары из-за слабого взаимодействия между М и А , поскольку каггаон М экранирован объемной клеткой криптанда, так что перенос длектрона осуществляется быстро и сверхтонкое взаимодействие в спектре ЭПР исчезает  [c.182]

    Большой интерес как метод синтеза аминов представляет перегруппировка, которую открыл Гофман, происходящая при действии на амиды брома (или хлора) и щелочи. Последняя, действуя как основание, вначале отщепляет протон от аминогруппы, полученный анион реагирует с бромом, в результате чего образуется соответствующий К-бромамид после отщепления от него протона вновь возникает анион с отрицательным зарядом на атоме азота, затем от последнего отщепляется бромид-анион и возникает нитрен - частица, содержащая незаряженный атом азота с секстетом электронов на внешней электронной оболочке (это превращение сходно с образованием дихлоркарбена из хлороформа см. разд. 2.4). К последнему переходит радикал с парой электронов. Образуется соответствующий изоцианат своеобразный аналог кетенов  [c.371]


Смотреть страницы где упоминается термин Радикалы оболочек: [c.443]    [c.49]    [c.140]    [c.165]    [c.701]    [c.424]    [c.213]    [c.518]    [c.40]    [c.1123]    [c.1127]    [c.49]    [c.346]    [c.91]    [c.563]    [c.262]    [c.179]    [c.498]    [c.91]    [c.223]    [c.563]    [c.210]    [c.11]   
Теория молекулярных орбиталей в органической химии (1972) -- [ c.345 ]




ПОИСК





Смотрите так же термины и статьи:

Оболочка



© 2025 chem21.info Реклама на сайте