Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Критическая скорость газа топлива

    На рис. 36 представлены типичные данные, показывающие, что интервал стабильности пламени возрастает с увеличением концентрации топлива в первичной струе и с увеличением размеров струи. Эти результаты объясняют [42] следующим образом Общий характер этих кривых вполне правдоподобен. Оторванное от сопла пламя может существовать лишь при образовании в области со сравнительно низкой локальной скоростью газа зоны приблизительно стехиометрического состава, ширина которой достаточна для воспламенения. Образование такой зоны возможно лишь в случае присутствия определенного минимального количества топлива на единицу длины струи. С увеличением средней скорости газа (до критической скорости срыва пламени) это минимальное количество топлива должно быстро возрастать. Это количество определяется произведением концентрации на сечение пер- [c.326]


    Дутье фильтруется через плотный слой топлива, находящегося на неподвижной или движущейся колосниковой решетке (рис. 2.5). Во избежание потерь от уноса и нарушения устойчивости слоя скорость газа в плотном слое должна быть ниже некоторой критической скорости. Время пребывания частицы топлива в плотном слое ничем не ограничено, вплоть до полного ее выгорания. [c.46]

    В сходящемся конусе сопла поток газообразных продуктов сгорания топлива разгоняется до скорости, равной скорости распространения звука. В критическом сечении сопла газовый поток как раз достигает скорости, равной скорости звука в газе с температурой и составом в этом сечении. [c.11]

    По направлению потока дымовых газов к раструбу их температура и давление уменьшаются, а скорость увеличивается. В результате действия дополнительных факторов, связанных с высокой турбу-лизацией газового потока, звуковыми и механическими колебаниями (вибрацией) и ударными волнами, возникают напряжения, которые могут вызывать неравномерную асимметричную абляцию. Материалы для раструба, который имеет большой размер, должны обладать малым весом и должны подвергаться абляции равномерно с минимальной скоростью для обеспечения оптимальной эффективности работы соплового блока и критического сечения. Конструкционные материалы обычно изготовляют из армированных пластмасс с ориентированными волокнами из углерода или кремнезема. В некоторых случаях применяется формование с беспорядочной укладкой кремнеземистого или кварцевого волокна. Наружные конструкционные элементы ракеты подвергаются воздействию механических и термических напряжений, которые вызываются давлением газов, вибрацией, ускорениями, усилиями, возникающими при корректировке курса, и различием термического расширения разных конструкционных материалов. Чтобы противостоять воздействию этих факторов, конструкционный материал должен обладать высокой прочностью, соответствующим модулем упругости и сопротивлением короблению. Жаростойкая сталь, титан, алюминий или стеклопластики с высоким. модулем, полученные намоткой, являются наиболее подходящими для изготовления нару кных деталей соплового блока. Применение неметаллических абляционных материалов в реактивных двигателях, работающих на жидком топливе, оказалось также очень эффективным, но относительно мало распространенным. Часто абляционные материалы здесь вообще не нужны, так как само топливо может служить в качестве охладителя. Кроме того, продолжительность горения относительно велика и часто проводят проверочные испытания двигателей в статических условиях работы. [c.451]


    Для сжиженного газа с диаметром очага горения = 50 м (вариант 2 табл 1) высота факела без ветра 1 = 66 6 м Значения критического расстояния равны 78 70 и 67 м для скорости ветра 2, 5 и 10 м/с соответственно В первом случае зона отчуждения представляет собой круг во втором и третьем случае - эллипс, вытянутый по ветру При скорости ветра 5 м/с радиус по ветру равен 52 м, против ветра -18 м, при скорости ветра 10 м/с радиус по ветру равен 64 5 м против -25м Было учтено выгорание топлива и распределение температуры по длине факела Возможность расчета радиационного потока, облучающего окружающие предметы, расположенные на поверхности земли позволяет определить температуру нагрева этих предметов Для произвольной точки расположенной на расстоянии X от факела, решают одномерное нестационарное уравнение теплопроводности прогрева грунта [c.56]

    Местонахождение точки с Ау = 0 зависит от распределения капель по размерам, подвода тепла к ним, летучести жидкости, скорости газа, распределений расходонапряженности и соотношения компонентов и давления в камере [22]. Чем ближе точка с Аи = 0 к смесительной головке, тем менее устойчива камера сгорания. Перемещению чувствительной к колебаниям зоны в направлении смесительной головки способствуют следующие условия [68, 79] уменьшение диаметра форсуночных отверстий/ скорости впрыска, степени сужения камеры повышение темпе- 1 ратуры компонентов наличие поперечных потоков повышение 5 равномерности распределения расходонапряженности и соотно-шения компонентов. По мере того как точка с Av = 0 приближа- ется к смесительной головке, возрастает выделение энергии в локальной зоне вблизи головки, что способствует возникнове-нию неустойчивости. Поперечные колебания у смесительной головки по амплитуде могут в 20 раз превосходить средний уровень внутрикамерного давления [22]. Волны могут вызывать срыв жидкости с отдельных капель, что интенсифицирует подвод энергии, способствуя поддержанию колебаний. Так как процессы срыва жидкости с поверхности и дробления капель зависят от величины капель, может существовать критический размер, определяющий возникновение неустойчивости. При высоких Аи степень распыления топлива менее чувствительна к пульсациям давления. [c.176]

    Существенным фактором, интенсифицирующим процессы горени [ и газификации твердых топлив, в ряде случаев можно считать также скорость потока реагирующих газов. В слоевых процессах скорость горония насколько высока и потребление кислорода в гетерогенных реакциях происходит так быстро и так активно, что длина кислородной зоны измеряется 2—3 диаметрами частиц, причем с повышением расхода дутья интенсивность гореиия углерода пропорционально возрастает (см. рис. 31). Практически скорость реагирования твердого топлпва в слое лимитируется только скоростью дутья и, следовательно, устойчивостью слоя кусков. Горение кокса в доменной печи, как известно, протекает при высоких темиературах (1600—2000°), и поэтому скорость процесса в основном оиределяется скоростью молярной диффузии, которая в свою очередь определяется скоростью дутья. Огромные скорости реакции твердых топлив, помимо благоприятных температурных условий, обеспечиваются высокими относительными скоростями между газом и частицами топлива. Высокие скорости обтекания газом кусков топлива, наряду с непрерывным подводом кнслорода к реакционной поверхиости, способствуют и отводу продуктов сгорания, в том числе и таких, как окись углерода, оказывающая тормозящее действие на горение углерода, и тем самым интенсифицируют слоевой процесс. Пределом скорости реакции в слое является переход в кинетический режим, когда суммарная скорость реакции будет определяться пе скоростью подвода окислителя, а скоростью химической реакцрш. Однако этого предела в кислородной зоне обычно достигнуть не удается, и практически суммарная скорость реакции в слое определяется, как раньше указывалось, такой скоростью подвода реагирующего газа, при которой сохраняется устойчивость залегания кусков топлива в слое. В зависимости от фракционного состава топлива критическая скорость газового потока, при которой теряется устойчивость частиц в слое, характеризуемая данными, приведенными [c.560]

    Процесс газификации пылевидного топлива осуществляется непосредственно в потоке газа. Чтобы частицы пыли уносились газовым потоком, скорость газа Юг должна быть выше критической скорости гг кр, при этом частица пыли приобретает поступательную скорость Шп = гог — гоцр- Для мелких частиц пыли ц кр настолько мала, что их поступательная скорость гг п незначительно отличается от скорости газового потока Юг. Для достижения высокого коэффициента использовапия пылевидного топлива необходимо применять частицы возможно меньшего размера. [c.172]


    Для иллюстрации принципиальных особенностей теоретических исследований две задачи будут рассмотрены несколько более подробно. Сначала в 3 ) будет рассмотрена задача Эммонса — задача о горении плоской поверхности топлива, имеющего заданную температуру, в потоке окислителя. Метод Шваба — Зельдовича здесь оказывается весьма удобным, поскольку рассматривается течение предварительно неперемешанных горючего и окислителя. Затем в 4 будет рассмотрена задача Марбла — Адамсона [ ] — задача о воспламенении потока предварительно перемешанной горючей смеси в зоне смешения с текущим параллельно потоком нагретого негорючего газа. Помимо других результатов, в этой задаче из уравнений пограничного слоя с химическими реакциями будет получено уравнение для определения собственного значения скорости ламинарного пламени (пункт ж 4). Будет дан также очень краткий обзор других работ, в которых рассматривается вопрос о пограничном слое с химическими реакциями, например, о пограничном слое у критической точки, о пограничном слое с абляцией и более сложными поверхностными процессами, о турбулентном пограничном слое, о стабилизации пламени плохо обтекаемыми телами и т. д. (пункт е, 3 нункт и, 4 пункт к, 4). [c.383]

    ХОДИТ зажигание, причем начальное пламя похоже на обычное остаточное пламя, образующееся в зоне смещения плохообтекаемого стабилизатора. При определенных условиях это пламя распространяется на весь поток холодной горючей смеси. Используя различные топлива, эти исследователи измерили расстояние, на которое удаляется зона образования начального и распространяющегося пламен от точки первого соприкосновения потоков. Установлено, что эти расстояния уменьшаются (как и следовало ожидать) с увеличением температуры потока инертного газа, коэффициента избытка топлива (ниже стехио-метрического) и отношения скорости инертного газа к скорости основного потока, а также с уменьшением абсолютной скорости основного потока. В этой работе отношения скоростей холодного и горячего потоков о/иг лежали в пределах 0,02—0,29 при максимальной скорости холодного потока, равной примерно 13 м/сек. Райт и Беккер, убедившись, что расчеты для случая однородных скоростей потоков не применимы в данном случае, указали на аналогию между их экспериментами и аналитическими исследованиями Марбла и Адамсона. Использовав концепцию Жукоского—Марбла о критическом времени контакта, они пришли к выводу, что X зависит только от химических характеристик горючей смеси и от поля температур, а не от каких-либо других параметров потока . [c.74]

    Температура в области, непосредственно примыкающей к критической зоне, измерялась [15] методом обращения спектральной Д-линии натрия.Установлено, что температура в конечной области сохраняется одной и той же. Эти измерения показали также, что температура в этой зоне изменяется в зависимости от коэффициента избытка топлива в основном потоке и от скорости его течения. В частности, температура в критической зоне быстро уменьшается, когда скорость основного потока возрастает. С другой стороны, Жукоский и Марбл [4], изучая стабилизацию пламени телами плохообтекаемой формы, установили, что температура в зоне рециркуляции сохраняется постоянной независимо от изменения скорости. На основании этого они сделали вывод, что в зоне рециркуляции горение является полным. Поскольку в нашем механизме справедливым оказывается противоположное, мы считаем, что горение в критической зоне не является полным и должно завершаться в каком-либо другом месте. В силу этого необходимы дальнейшие исследования процессов перемешивания, так как иначе нельзя будет выяснить истинную картину рассматриваемого механизма. Хотя критическая зона имеет чрезвычайно важное значение, она не является единственным определяющим фактором. Если бы это было так, то инертные газы не стабилизировали бы пламя. Поэтому мы должны учитывать процесс горения, протекающий в зоне смешения. [c.329]

    Аналогично ингибиторам и антиоксигенным веществам действуют антидетонаторы. Антидетонаторами называют вещества, противодействующие детонации и замедляющие скорость горения газа. Они препятствуют взаимодействию топлива и кислорода и представляют собой вообще вещества, легко разлагаю1циеся с образованием твердых частиц. Известно, что сжигание топлива в двигателях внутреннего сгорания может сопровождаться детонацией или протекать без детонации. Явление детонации наблюдается при горении газсв в определенных условиях. Для детонации характерна определенная, большая скорость распространения химического процесса по всей газовой фазе. Эта скорость близка к скорости звука [131], достигая ее при критическом давлении, которое определяет характер горения. Указывают, что детонация индуцируется определенными органическими соединениями, которые действуют с различной силой. Установлено, что соединения, содержащие этильный радикал, соединенный с бромом, кислородом и серой, а также более простые соединения, содержащие этильную группу, вызывают относительно слабую детонацию, между тем как алкилнитраты и нитриты [132], если они вводятся в топливовоздушную смесь, вызывают сильную детонацию. Способность вызывать детонацию приписывалась в молекуле атому, который в наибольшей степени изменен связанными с ним радикалами или группами. Вещество, индуцирующее детонацию, должно быть или смешано со всасываемым воздухом, или растворено в топливе. Предполагали, что механизм детонирующей реакции представляет собой видоизмененный механизм цепной реакции [3] в том смысле, что он содержит не отдельный центр, но группу центров, дающих микроцепи . [c.348]


Смотреть страницы где упоминается термин Критическая скорость газа топлива: [c.166]    [c.106]    [c.106]   
Сушка в химической промышленности (1970) -- [ c.21 ]




ПОИСК





Смотрите так же термины и статьи:

для скоростей газов



© 2025 chem21.info Реклама на сайте