Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод критической зоны

    Включает одно- или многомерные оконные диаграммы, метод критических зон, метод [c.307]

    Одним из авторов настоящей главы предложен весьма приближенный метод расчета сосуда применительно к тем случаям, когда деформация ползучести в переходном периоде мала по сравнению с деформацией ползучести, накопленной на стадии установившегося режима эксплуатации. Этот метод не имеет экспериментального подтверждения, однако целесообразность его использования состоит в том, что он дает возможность оценить условия деформирования в критических зонах конструкции. [c.127]


    Изложенное выше относится и к динасу для коксовых печей °. Остин и Пирс наблюдали образование отчетливых зон микроскопическим и дилатометрическим методами наружные слои состояли из кристобалита промежуточные — из тридимита, а во внутренних частях сохранялся кварц. Общее термическое расширение этих различных минералов определяет стабильность кирпичей. Низкая температура плавления эвтектики в системе кремнезем — окись кальция — закись железа (см. В. II, 122 и ниже) (лишь—1100°С) служит причиной образования критической зоны в кирпиче если жидкотекучие эвтектические расплавы будут накапливаться в отдельных местах, то такие участки легко могут вызвать разрушение и дефекты кирпича. Остин и Пирс пришли к важным заключениям о том, что стабильность связана также с теплопроводностью различных зон температурный коэффициент теплопроводности будет отрица- [c.765]

    В случае железа, очищенного методом зонной плавки, проявление полигональной структуры наблюдается легко (через несколько секунд после нанесения реактива вместо 10 мин), что показано на микрофотографии, представленной на рис. 12. Рекристаллизация же подавляется этой субструктурой, которая здесь оказывается фактором устойчивости. Если в процессе цементации вводить небольшие количества углерода в это очень чистое железо, то железо приобретает свои обычные свойства и появляется возможность приготовления монокристаллов методом критического наклепа. [c.362]

    Основные положения. В основе известных расчета на прочность используется линейная механика разрушения. При небольших сравнительно с пределом текучести, разрушающих напряжениях деталь находится в хрупком состоянии. Тогда справедливы асимптотические оценки напряженного состояния в окрестности вершины трещины и расчет на прочность можно вести по известному критерию Ирвина (К < Кс) линейной механики разрушения. С повышением уровня разрушающих напряжений зона пластических деформаций, окружающая вершину трещины, увеличивается в размерах. Если номинальное разрушающее напряжение больше предела текучести, то разрушение можно назвать квазихрупким. При этом асимптотические оценки напряжений у вершины трещины перестают быть справедливыми, понятие коэффициента интенсивности отсутствует и для расчета детали на квазихрупкое состояние требуются другие методы (даваемые нелинейной механики разрушения). На температурной зависимости разрушающего напряжения области хрупкого и квазихрупкого состояний отделяются так называемой второй критической температурой [10], т. е. той температурой, при которой номинальное разрушающее напряжение образца с трещиной равно пределу текучести при данной температуре. Поскольку разрушающее напряжение зависит от длины трещины, то при изменении длины трещины можем получать области хрупких и квазихрупких состояний при одной и той же температуре детали. Следовательно, желателен единый метод расчета для хрупкого и квазихрупкого состояния, поскольку расчет должен предусматривать варьирование длины трещины путем введения соответ- [c.229]


    Метод 8. Вытеснение нефти углеводородными растворителями (вытеснение со смешиванием) основано на последовательной закачке в пласт углеводородного растворителя и сухого газа. Углеводородным растворителем служит сжиженный нефтяной газ, состоящий в основном из пропана и бутана. Эффективность метода достигается тем, что пропан-бутановая фракция хорошо смешивается не только с пластовой нефтью, но и с вытесняющим сухим углеводородным газом при сравнительно невысоких пластовых давлениях. Из рис. 21 видно, что критическое давление для системы пропан — пентан, которая соответствует системе пластовая нефть — растворитель, не превышает 5 МПа. Критическое давление системы растворитель — сухой газ (на рисунке — система метан— пропан) не превышает 10—11 МПа. При этом в реальных условиях зона смешивания пластовая нефть — растворитель находится в области более низких давлений, че.м зона растворитель — сухой газ. Следовательно, метод вытеснения оторочкой углеводородного растворителя может быть применен при давлении нагнетания до 10—11 МПа. При внедрении этого процесса в пласте обычно создают пропановую оторочку в размере нескольких процентов объема порового пространства, которая продвигается более дешевым рабочим агентом — метаном или метано-водяной смесью. Основные ограничения применению метода большая вероятность разрыва сплошности пропановой оторочки, что требует увеличения объемов закачки высокая стоимость и дефицитность пропана. [c.57]

    Значительно ускоряется анализ высококипящих соединений в случае использования- хроматографии с парообразными подвижными. фазами при давлениях, превышающих критические [ИЗ]. С увеличением плотности среды движение хроматографических зон в колонке резко ускоряется например фенантрен элюируется в -120 раз, а нафтацен в 750 раз быстрее [114]. Недостаток метода состоит в необходимости работы при высоком давлении, в 1,5—2 раза превышающем критическое, которое для большинства веществ находится в пределах 1 — 10 МПа. [c.124]

    Закачка сухого газа высокого давления была предложена впервые в СССР в конце 40-х годов. Процесс вытеснения нефти из пласта углеводородными газами высокого давления базируется на взаимодействии родственных по составу систем, в соответствии с их свойствами, давлением и температурой, В результате нагнетания газа высокого давления образуется переходная вытесняющая зона, которая отличается по свойствам как от нефти, так и от нагнетаемого газа. Свойства этой зоны формируются, с одной стороны, за счет насыщения нефти промежуточными компонентами из газа, а с другой, — за счет насыщения компонентами нефти нагнетаемого газа. Состав этой переходной зоны можно определить из треугольной диаграммы ( ис. 5.72), отражающей состав и фазовое состояние системы при реализации метода. В пласт с нефтью состава L подается сухой газ состава С. Так как линия ЬС пересекает двухфазную область, эти среды непосредственно не могут смешаться друг с другом, хотя и имеют в принципе одинаковую углеводородную природу. Но по мере продвижения газа д в пласте вследствие испарения нефти он постепенно обогащается тяжелыми компонентами (фракциями С2-6 и С7-1-), пока не достигнет критического состава В. Такой обогащенный в пласте газ смешивается в любом соотношении с пластовой нефтью или с любой углеводородной системой с составом, соответствующим области правее линии ММ. [c.308]

    Вытеснение нефти обогащенным газом основано на закачке смеси углеводородных газов с определенным содержанием фракций 2-6 и 7+. Точка на тройной диаграмме, соответствующая составу нагнетаемого в пласт газа, располагается правее разделительной линии МЫ (см. рис. 5.72). В результате конденсации газа в пластовой нефти после нескольких этапов их контактирования на фронте вытеснения образуется смесь критического состава В, которая способна смешиваться в любых пропорциях с вытесняемой пластовой нефтью. Необходимо отметить, что если состав газа соответствует левой области диаграммы, формирование критического состава не достигается. По сравнению с методом закачки сухого газа вытеснение нефти с конденсацией обогащенного газа реализуется при меньших давлениях (10—20 МПа). Закачка обогащенного углеводородного газа более эффективна на месторождениях с плотностью нефти до 825 кг/м . При больших плотностях нефти расход газа для создания зон смешения резко возрастает. Особенность технической реализации закачки обогащенного газа состоит в необходимости обеспечения строгого контроля за составом закачиваемого газа. [c.312]

    Величина критической температуры, определенной по этому методу, как показано ниже, во всех случаях выше критической температуры граничной масляной пленки, не находившейся длительно в зоне контакта трущихся поверхностей. [c.250]

    В табл. 1.4.31 приведены критические значения магнитной проницаемости хромоникелевых сталей с различным содержанием никеля, а на рис. 1.4.35 значения параметра д.кр представлены в виде графической зависимости от содержания никеля в хромоникелевых сталях при температуре 293 и 4,2 К в магнитных полях различной напряженности (Н) и магнитном поле Земли. Значения параметра Цкр были получены на основе непосредственных измерений магнитной проницаемости на образцах и действующем оборудовании, а также данных, определенных методом математического планирования эксперимента. Как следует из табл. 1.4.31 и рис. 1.4.35, величина критического значения магнитной проницаемости зависит от содержания никеля в стали, напряженности магнитного поля, температуры ее измерения. С увеличением содержания в сталях никеля, как в магнитном поле Земли, так и во внешнем магнитном поле (независимо от температуры измерения), критическая величина магнитной проницаемости возрастает. Увеличение напряженности магнитного поля, наоборот, уменьшает ее значение. Однако определяющими факторами критического значения магнитной проницаемости являются структурное состояние стали, зависящее от ее химического состава, режима провоцирующего нагрева и, главным образом, склонности стали к МКК как основного фактора, определяющего работоспособность оборудования. В связи с этим использование подобных таблиц (табл. 1.4.31) и графиков, подобных приведенным на рис. 1.4.35, в сочетании с металлографическим анализом позволяет непосредственно на контролируемом объекте оборудования в короткое время выявить состояние металла и опасные зоны в нем. [c.93]


    Аналогично случаю равномерного нагрева прямоугольным импульсом, в методе движущегося источника существует оптимальный момент наблюдения (время задержки), который зависит от температуропроводности материала и глубины залегания дефекта. Основным критическим параметром данного метода является расстояние между зоной нагрева и зоной регистрации температуры Ь, определяемое как  [c.161]

    С увеличением плотности среды движение хроматографических зон в колонке резко ускоряется. Недостаток метода состоит в необходимости работы при высоком давлении, в 1,5-2 раза превышающем критическое, которое для большинства веществ находится в пределах 1-10 МПа. [c.71]

    Влияние радиуса пленок. Из приведенных выше уравнений следует, что радиус пленки должен играть решающее значение для критической толщины. Исследования, проведенные Шелудко и сотр. [1] на двусторонних пленках и нами на каплях эмульсий, дали различные результаты. В опытах с двусторонними пленками ясно видно влияние радиуса в соответствии с теорией [10]. В эмульсиях такое влияние не обнаруживается. Причиной этого различия, очевидно, является метод измерения пленки и способ оценки толщины. Шелудко с сотр. измеряли толщину пленки способом фотометри-рования всей зоны контакта. К сожалению, этот слой не вполне плоскопараллелен и в тем большей степени, чем больше радиус пленки [И]. Это ведет, по нашему мнению, формально к увеличению значений, получаемых для критической толщины. Поэтому мы измеряли толщину пленки в процессе ее скачкообразного утоньшения, фото-метрируя только небольшой участок этой пленки. С помощью фотоумножителя намечался самый тонкий участок в пленке, на котором затем и наблюдался разрыв. Толщина в этом случае сохранялась независимой от радиуса. [c.264]

    Метод критической зоны. Колин и др. [55] описали иной метод построения диаграмм, позволяющих предсказать оптимальные условия. Их подход базируется на вычислении так называемых критических зон. Если для хроматографируемого компонента / известна поверхность удерживания, то некоторую зону, находящуюся ниже коэффициента емкости, можно определить как запрещенную. Если предыдущий компонент I, попадающий в эту критическую зону, имеет коэффициент емкости к(, то разрешение между I и / оказывается недостаточным. Уравнение (1.20) связывает разрешение с коэффициентами емкости индивидуальных компонентов  [c.257]

    Авторы работы [57] использовали аналогичный метод для оптимизации состава бинарной подвижной фазы в ОФЖХ. Однако они не применили уравнения (5.16) и (5.17), а строили линии удерживания для наблюдаемых восходящей и нисходящей ветвей пика. Поскольку на эти параметры оказывает влияние не только коэффициент емкости и ширина пика, но и чувствительность обнаружения, то метод Колина и соавторов следует предпочесть методу, примененному в работе [57]. Суть метода критических зон Колина и соавторов можно сформулировать следующим образом. [c.261]

    Тиль и Кэй [26] проделали расчет отклонений от идеального состояния по уравнению (101) и сраниилн полученные величины с величинами, определенными опытным путем для лигроина и бензина с целью проверки применимости этого метода к сложным нефтяным углеводородным смесям и показали, что вычисленные величины вполне соответствуют опытным, за исключением критической зоны. Отклонения в критической зоне авторы объясняют разницей между чистыми веществами и смесями, основываясь на том, что в с.пучае бензина (широкая фракция) отклонения больше, чем в случае узкокинящец фракции лигроина. [c.36]

    Темпаратурные поля, построенные по этой методи ке, позволяют приближенно получать наглядное изображение изменения температурного пол1Я во времени, определять зоны, имею1щме максимальный темп агрева (критические зоны) и направление теплового потока. [c.45]

    Температура в области, непосредственно примыкающей к критической зоне, измерялась [15] методом обращения спектральной Д-линии натрия.Установлено, что температура в конечной области сохраняется одной и той же. Эти измерения показали также, что температура в этой зоне изменяется в зависимости от коэффициента избытка топлива в основном потоке и от скорости его течения. В частности, температура в критической зоне быстро уменьшается, когда скорость основного потока возрастает. С другой стороны, Жукоский и Марбл [4], изучая стабилизацию пламени телами плохообтекаемой формы, установили, что температура в зоне рециркуляции сохраняется постоянной независимо от изменения скорости. На основании этого они сделали вывод, что в зоне рециркуляции горение является полным. Поскольку в нашем механизме справедливым оказывается противоположное, мы считаем, что горение в критической зоне не является полным и должно завершаться в каком-либо другом месте. В силу этого необходимы дальнейшие исследования процессов перемешивания, так как иначе нельзя будет выяснить истинную картину рассматриваемого механизма. Хотя критическая зона имеет чрезвычайно важное значение, она не является единственным определяющим фактором. Если бы это было так, то инертные газы не стабилизировали бы пламя. Поэтому мы должны учитывать процесс горения, протекающий в зоне смешения. [c.329]

    На рис. 5.18 показаны линии удерживания и критические зоны для пяти ароматических соединений. Вдоль вертикальной оси откладывается логарифм коэффициента емкости в ОФЖХ, а вдоль горизонтальной оси — отношение смешения двух изоэлюотропных бинарных фаз, составляющих в сумме тройную смесь. Разделения всех компонентов с разрешением больше 1,6 (значение, выбранное для построения рис. 5.18, а) можно достигнуть при таком составе фазы, когда никакие из критических зон не перекрываются. Оптимальный состав можно определить методом линейки (см. выше) такой состав, как указано на рисунке, характеризуется отношением смешения 0,83. Это соответствует смеси, содержащей 33% (0,83-40) ацетонитрила, [c.257]

    Метод 7. Вытеснение нефти обогащенным газом основано на закачке смеси углеводородных газов с содержанием фракций С2-6 и С7+ несколько десятое процентов. Точка О на тройной диаграмме, соответствующая составу нагнетаемого в пласт газа, располагается правее разделительной линии ММ (см. рис. 18). В результате конденсации газа в пластовой нефти после нескольких этапов их контактирования на фронте вытеснения образуется смесь критического состава В. По сравнению с методом закачки сухого газа вытеснение нефти с конденсацией обогащенного газа происходит при меньших давлениях (10,5— 21 МПа). Метод эффективен на месторождениях с плотностью менее 0,925 г/см , так как на залежах с тяжелыми нефтями увеличивается расход газа для создания зоны смешения достаточных размеров. При осуществлении этого метода необходимо обеспечение строгого контроля за составо.м закачиваемого газа. [c.57]

    Если бы реактор не имел отражателя, можно было бы воспользоваться непосредственно равенством (6.80) для определения критической концентрации топлива. Поскольку в данном случае есть отражатель, необходимо видоизменить это соотношение, чтобы учесть влияние отражателя. В гл. 1 было показано, что назначение отражателя состоит в том, чтобы уменьшить утечку нейтронов из активной зоны и, следовательно, понизить критическую концентрацию топлива в системе. Ясно, что, если отражатель совсем не принимать во внимание, оценка критической концентрации топлива может оказаться слишком завышенной. Нужно попытаться произвести более точные вычисления. Для этого можно воспользоваться эквивалентным реактором без отражателя. Определим размеры цилиндрического реактора без отражателя, который становится критическим при той же концентрации топлива, как и действительный реактор с отражателем. Понятно, что эта эквивалентная система без отражателя должна иметь в точности такую же геометрию тепловыделяющих элементов и такое же распределение нетопливных компонентов, как и реальная система. Если бы удалось как-то оценить размеры системы без отрая ателя, то можно было бы воспользоваться равенствами (5.204) и (6.80) для вычисления критической концентрации. Соответствующий метод — метод эффективной добавки — рассмотрен в общей теории многозонных реакторов (гл. 8). Этот метод позволяет оценить увеличение размеров при переходе от системы с отражателем к системе без отражателя при условии, что обе системы критичны прп одной и той же концентрации топлива. [c.229]

    Для того чтобы оценить влияние условия Сербера — Вильсона на соотношения критичности, в последующем будет вычислен критический радиус для различных составов активной зоны и отражателя и результаты будут сравнены с вычислениями, основанными на методе, изложенном в 8.26 (условие непрерывности потока). [c.318]

    Разрушение участка трубопровода (0168x12 мм) газа раз-газирования на Карачаганакском нефтегазоконденсатиом месторождении произошло в зоне приварки штуцера (060x14 мм). В момент, предшествовавший разрушению, трубопровод находился под давлением 3,5 МПа в отсутствие движения среды. Температура стенки трубы составляла минус 25-минус 27°С. Зарождение и докритический рост трещин происходили из-за наличия непровара на границе сплавления кольцевого шва штуцера и основного металла трубы. После достижения трещиной критической длины (40-42 мм) началось лавинообразное разрушение в обе стороны от штуцера, о чем свидетельствует наличие шевронного излома. Остановка трещин произошла на основном металле трубы в результате их многократного разветвления. Трещины в шве образовались из-за нарушения технологии подготовки изделий под сварку и возникновения остаточных сварочных напряжений. В соответствии с требованиями нормативной документации штуцер должен изготавливаться без отверстия и привариваться к трубе угловым швом с разделкой кромки. Сверление штуцера и трубы должно выполняться после его приварки с одновременным сверлением отверстия в трубе и удалением возможных непроваров в корне шва. Сварное соединение данного штуцера было выполнено с нарушением технологии изготовления и имело непровары и трещины глубиной до 3 мм. Наличие этих характерных дефектов сварных швов свидетельствовало о том, что контроль качества металла неразрушающими методами не проводился. Предусмотренная технологией местная термическая обработка сварного соединения патрубок-труба , проводимая путем нагрева металла пламенем газовой горелки, не привела к существенному снижению напряжений в сварном шве. Разрущение трубопровода газа разгазирования произошло по механизму сероводородного растрескивания в результате развития недопустимых дефектов (трещины, непровары, высокие остаточные напряжения) в сварном соединении штуцер-труба . [c.31]

    Первое предельное состояние защитного покрытия, наступающее в результате коррозионного растрескивания, характеризует величина порогового значения коэффициента интенсивности напряжения К18СС, выше которого наблюдается резкое увеличение скорости роста трещин. Значения порогового Кгзсс определяют с помощью оптического индикаторного метода, которым контролируется глубина проникновения среды в вершине трещины, В тех случаях, когда коэффициент интенсивности напряжений Кг меньше критического, трещина не растет и агрессивная среда равномерно проникает в глубь материала через трещршу. Если Кт больше критического, в устье трещины возникает зона разрыхленного материала (зона предразрушения), в которую более интенсивно проникает агрессив- [c.48]

    Для иллюстрации принципиальных особенностей теоретических исследований две задачи будут рассмотрены несколько более подробно. Сначала в 3 ) будет рассмотрена задача Эммонса — задача о горении плоской поверхности топлива, имеющего заданную температуру, в потоке окислителя. Метод Шваба — Зельдовича здесь оказывается весьма удобным, поскольку рассматривается течение предварительно неперемешанных горючего и окислителя. Затем в 4 будет рассмотрена задача Марбла — Адамсона [ ] — задача о воспламенении потока предварительно перемешанной горючей смеси в зоне смешения с текущим параллельно потоком нагретого негорючего газа. Помимо других результатов, в этой задаче из уравнений пограничного слоя с химическими реакциями будет получено уравнение для определения собственного значения скорости ламинарного пламени (пункт ж 4). Будет дан также очень краткий обзор других работ, в которых рассматривается вопрос о пограничном слое с химическими реакциями, например, о пограничном слое у критической точки, о пограничном слое с абляцией и более сложными поверхностными процессами, о турбулентном пограничном слое, о стабилизации пламени плохо обтекаемыми телами и т. д. (пункт е, 3 нункт и, 4 пункт к, 4). [c.383]

    Впервые систематизируются научные исследования в области макроскопической модели протекания быстрых процессов олиго- и полимеризации изобутилена. Обсуждаются диффузионная, гидродинамическая и зонная модели. Рассмотрено математическое моделирование процесса полимеризации изобутилена как быстрой химической реакции. Раскрыты основные принципиально новые, в большей мере не имеющие аналогов, закономерности процесса и выявлены три макроскопических типа протекания реакции, прежде всего факельного и квазиидеального вытеснения в турбулентных потоках ( плоский фронт реакции). Рассмотрен нетрадиционный подход к оценке кинетических констант реакции полимеризации изобутилена Кр и К . Детально проанализированы методы регулирования основных молекулярно-массовых характеристик полиизобутилена благодаря изменениям различных факторов в первую очередь не имеющих аналогов в режиме квазиидеального вытеснения в турбулентных потоках, где выявлен ряд критических параметров. Рассмотрено влияние теплосъема как внешнего, так и внутреннего (за счет кипения мономера и/или растворителя). Детальный анализ теплового режима реакции полимеризации изобутилена и его влияния на молекулярную массу и молекулярно-массовое распределение полимера позволили предложить новый метод оценки молекулярно-массовых характеристик с использованием зонной модели. На базе этой модели разработаны принципы регулирования молекулярных масс и молекулярно-массового распределения полиизобутилена в зависимости от числа зон подачи катализатора и его количества, подаваемого в каждую зону. [c.378]

    По методу, предложенному Хрущовым и Матвеевским, в процессе трения сопряженных поверхностей, погруженных в испытуемое масло, определяют температуру (последовательно переходя от низких температур к высоким), при которой скачкообразно возрастает коэффициент трения л. Эту температуру авторы принимают за критическую температуру масляной пленки. Таким образом, по методике Хрущова и Матвеевского устанавливают температуру разрушения масляной пленки, длительно находившейся в зоне контакта 1111. [c.250]

    Уравнение Бенедикта — Уэбба — Рубина долгое время использовалось как стандартное для определения Ki обеих фаз, однако, как считают некоторые исследователи, оно слишком сложно, чтобы его имело бы смысл применять при повторяющихся расчетах, например при решении задач, связанных с дистилляцией. В настоящее время для решения такого рода задач разработаны более простые методы расчета, примером может служить программа Кристиансена и др. [222] для многокомпонентной дистилляции, включая уравнение Соава. Результаты, полученные по основному алгоритму с акцентом на критические области и зоны высокого давления, рассмотрены на основе уравнения Соава — Асселина и др. [165]. Схема дистилляции с применением уравнения Соава или Пенга —Робинсона для оценки АГ, в задачах криогенной техники превосходит метод Чао — Сидера [632]. Сим и Доберт [637] пришли к выводу, что метод Соава наиболее пригоден для расчетов процессов испарения нефтяных смесей. Они разделяли смесь на фракции с интервалом по температуре кипения в 25°С и соотносили среднюю точку кипения Ть и плотность S с молекулярной массой М и критическими характеристиками, необходимыми для решения уравнения Соава. Ниже приведены эти эмпирические зависимости  [c.311]

    Рамановские спектры алмаза первого и второго порядков, полученные на ориентированных образцах при лазерном возбуждении, также описаны. Были уточнены однофононные дисперсионные кривые для алмаза, полученные ранее по данным нейтронной спектроскопии, приведены энергетические значения для фононов. На рис. 154, б показан спектр поглощения алмаза в области 1332 см . Вертикальными линиями обозначены значения волновых чисел, которые соответствуют по энергии двухфононным переходам, разрешенным правилами отбора для решетки типа алмаза. Значения энергий фононов в критических точках зоны Бриллюэна в сравнении с приведенными данными показывают, что на основании имеющихся в настоящее время сведений о динамике решетки алмаза детальное объяснение всех особенностей двухфононного участка спектра не представляется возможным. По-видимому, динамика решетки алмаза, возмущенной примесями и другими структурными дефектами, способными вызвать изменения в фононном спектре и привести к нарушению правил отбора, изучена недостаточно. физическая классификация алмазов, основанная на особенностях проявления реальной структуры кристаллов алмаза, при их исследовании различными методами непрерывно детализируется. В настоящее время известно более 50 различных дефектных центров в алмазной решетке, и лишь для некоторых из них удалось установить конкретную природу. [c.416]

    Представляя зависимость Ад от Р в догарифмичесрсом масштабе (рис. 52) и определяя из угла наклона показатель степени при значении Я, для хлорбензола, анилина и воды найдем величину, близкую к 2/7. На первый взгляд это говорит о справедливости уравнения (88) для хлорбензола и анилина. Однако уравнение (88) обычно не соответствовало условиям проведения опытов, при которых, как правило, выполнялось соотношение Пт > АРа-Измерения в случае тонких слоев между капельками эмульсий дали совершенно иные результаты [205]. Так, не обнаружена зависимость критической толщины пленки от величины поверхности соприкосновения. По-видимому, причина состоит в том, что подобные пленки нельзя рассматривать как плоскопараллельные. В периферийной зоне пленок всегда имеется утоньшение, а в центре — утолщение (см. рис. 37) . Эта неоднородность увеличивается с возрастанием радиуса. При измерении толщины интерференционным методом путем фотометрирования всей пленки влияние радиуса изучается лишь формально. Напротив, если измеряют толщину малых сегментов пленки и направляют фотоумножитель в место с наименьшей толщиной, то значение Лс оказывается независимым от радиуса. [c.96]

    Крекинг под давлением является наиболее распространенным методом крекинга, он проводится при температуре 450— 550° С и давлении от 20 до 70 ат. В этих условиях такие виды сырья, как бензин, имеющий критическую температуру 300° С, лигроин 350° С, керосин - 410° С, газойль - 475°С и, кроме того, продукты реакции газ, крекинг-бензин, крекинг-керосин и др., имеюигие низкую критическую температуру, находятся в зоне реакции в парообразном или газообразном состоянии. Часть указанных продуктов может находиться в жидкости в растворенном состоянии, но другая, большая, часть будет в газообразном и парообразном состояниях. [c.122]

    Первый результат применения уравнения (4) состоял в получении коависимым методом [331 уравнения (2) теории Фрумкина — Дерягина, описывающего условия полного термодинамического равновесия пленки с объемной жидкостью. Далее оказалось, что решение уравнения (4) применительно к состояниям механического равновесия мениска позволяет определить также значения наступающего и отступающего краевых углов. На рис. 4 показаны критические профиля переходной зоны для этих случаев. При краевом угле большем 0л или меньшем 0/ происходит нарушение механического равновесия, профиль теряет устойчивость и начинается течение жидкости. Таким образом, уравнение (4) содержит информацию не только о равновесных, но также и о гистерезисных краевых углах. Заметим, что этот механизм гистерезиса не связан с шероховатостью поверхности и объясняет возможность гистерезисных явлений также и на гладких поверхностях. Так, Фишер [34] наблюдал гистерезис для капель на молекулярно [c.29]


Смотреть страницы где упоминается термин Метод критической зоны: [c.259]    [c.54]    [c.441]    [c.258]    [c.260]    [c.358]    [c.347]    [c.360]    [c.341]    [c.347]    [c.351]    [c.519]    [c.15]    [c.363]    [c.363]    [c.313]   
Оптимизация селективности в хроматографии (1989) -- [ c.257 ]




ПОИСК







© 2025 chem21.info Реклама на сайте