Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбитали S характер

    Энергия ионизации молекул. В прямой зависимости от характера распределения электронов по связывающим и разрыхляющим молекулярным орбиталям находится также значение энергии ионизации молекул. Как мы видели, в двухатомной молекуле связывающие электроны лежат глубже, чем в атоме, а разрыхляющие — наоборот. Таким образом, энергия ионизации молекулы, верхний занятый энергетический уровень которой является связывающим, выше, чем таковая свободного атома. Например, энергия ионизации молекулы N2 (15,58 эВ) больше энергии ионизации атома азота (14,53 эВ). Если же верхний занятый уровень молекулы является разрыхляющим, то энергия ионизации молекулы меньше, чем атома. Так, энергия ионизации молекулы О 2 (12,08 эВ) меньше энергии ионизации атома кислорода (13,62 эВ). [c.56]


    Магнитные свойства молекул. Характер распределения электронов по молекулярным орбиталям позволяет объяснить также магнитные свойства молекул. По магнитным свойствам различают парамагнитные и диамагнитные вещества (см. с. 155). П а р а м а г-н и т н ы м и являются вещества, у которых имеются непарные электроны, у диамагнитных веществ все электроны парные. [c.56]

    По характеру заполнения 4/-орбиталей элементы семейства лантаноидов разделяются на подсемейства. Первые семь элементов (Се—Ос]), у которых в соответствии с правилом Хунда 4/-орбитали заполняются по одному электрону, объединяются в подсемейство церия семь остальных элементов (ТЬ—Ей), у которых происходит заполнение 4/-орбиталей по второму электрону, объединяются в подсемейство тербия  [c.639]

    Кристалл арсенида галлии имеет алмазоподобную структуру. Определить тип и механизм гибридизации орбиталей в атомах галлия и мышьяка и характер образующейся связи. [c.57]

    Каждая из молекулярных орбиталей охватывает все атомы молекулы и поэтому по характеру распределения электронной плотности i e четыре атома водорода равноценны. Это отвечает наличию четырех [c.64]

    Начнем с изучения влияния октаэдрического поля на полное представление, для которого базис образует совокупность -волновых функций. Чтобы получить это полное представление, необходимо найти элементы матриц, которые выражают результат действия каждой из операций симметрии группы на наш базис из -орбиталей. Характеры этих матриц содержат представление, которое мы ищем. Поскольку все -орби-тали четны, т. е. симметричны по отнощению к операции инверсии, в результате операции инверсии никакой новой информации получить не удастся. Таким образом, мы можем иметь дело с более простой чисто вращательной подгруппой О, а не О . Если вы хотите убедиться в этом сами, то вспомните, что в любой группе, включающей г (например, или Сзй), соответствующая группа вращений (например, или Сз) имеет то же самое неприводимое представление для двойных произведений, за исключением нижних индексов и и д в первой группе. Напомним, что -волновые функции состоят из радиальной, спиновой и угловой (0 и ф) компонент. Радиальной компонентой мы пренебрегаем в силу ее ненаправленного характера, поскольку она не меняется при любых операциях симметрии. Кроме того, мы примем, что спиновая компонента не зависит от орбитальной и в данной ситуации пренебрежем первой. Угол 0 определяется относительно главной оси, например оси вращения, поэтому он не меняется при любом вращении и им также можно пренебречь. Меняется только ф эта составляющая волновой функции выражается как е"" . (Для -орбиталей = 2, а т, принимает значения 2, 1, О, — 1, —2.) Для того чтобы определить влияние поворота [c.75]


    Укажите с помощью электронной формулы и атомных орбиталей характер химической связи между атомами металла и неметалла в соединении внедрения Ti . [c.401]

    Как было указано в гл. II, разд. 3,в, насыщенный углеродный атом образует а-связи за счет гибридных орбиталей, -характер которых равен 1/4, тогда как этиленовый или бензоидный атом углерода образует простые связи за счет орбиталей, 5-характер которых равен 1/3, а ацетиленовый атом углерода — за счет орбиталей с -характером, равным 1/2. Следовательно, по сравнению с насыщенным углеродным атомом этиленовые и бензоидные атомы углерода являются несколько более электроотрицательными, тогда как ацетиленовый атом углерода значительно более электроотрицателен. Эти ненасыщенные атомы вызывают индуктивные эффекты (—/), которые должны ослабляться вдоль цепи насыщенных углеродных связей. Качественно эти положения отражены в табл. 195. Однако имеются некоторые детали, требующие пояснений. [c.921]

    Учитывая это, мы обращали особое внимание в наших теоретических расчетах на относительный порядок энергии орбиталей, характер связей переходный металл—углерод и природу переходного состояния, [c.185]

    Характер изменения различия в энергиях пз- и пр-орбиталей элементов данной подгруппы и влияние этого фактора на свойства однотипных соединений элементов показаны на рис. 137. Как видно на рис. 137, [c.267]

    Однако экспериментально наблюдаемые длина связи и энергия связи для молекулы О2, как было показано выше, полностью согласуются с простейшей двоесвязной структурой 0=0=. В гл. 12 мы убедимся, что удовлетворительное объяснение парамагнетизма и характера связи в молекуле кислорода достижимо в рамках теории молекулярных орбиталей. [c.470]

    Молекулярные орбитали Н2О образуются за счет 2s-, и 2р-орбиталей атома кислорода и ls-орбиталей двух атомов водорода. Характер перекрывания этих орбиталей показан на рис. 147. [c.312]

    В соответствии с характером распре деления электронов по орбиталям молекула НзЫ имеет три первых потенциала ионизации (22,4 15,2 и 10,5 эВ), что отвечает удалению электрона с одного из трех заполненных энергетических уровней. [c.347]

    Характер гибридизации Пространственное распо- Примеры соединений орбиталей атома углерода ложение а-связей [c.391]

    Характер гибридизации орбиталей атома Э (О, N, С) [c.397]

    Характер гибридизации орбиталей атома бора [c.438]

    У Низко- и высокоспиновые комплексы. Теория кристаллического поля достаточно просто и наглядно объясняет магнитные свойства комплексов, их спектры и ряд других свойств. Для понимания этих свойств необходимо знать характер распределения электронов по -орбиталям иона, находящегося в поле лигандов. Последнее зависит от соотношения величины энергии расщепления А и энергии отталкивания электронов друг от друга. [c.507]

    Различие в характере распределения электронов на л. - и орбиталях зависит от величины Д и определяется условиями, рассмотренными в предыдущем параграфе. [c.513]

    Проявление той или иной пространственной конфигурации комплексов существенно зависит от характера распределения электронов по молекулярным орбиталям и от величины А. Так, в октаэдрических комплексах электронная плотность наиболее симметрично распределяется при следующих электронных конфигурациях  [c.518]

    Периодический характер заполнения 4/-орбиталей сначала по одному, а затем по два электрона предопределяет внутреннюю периодичность в изменении свойств лантаноидов и соединеннй. [c.641]

    Характер распределения электронной плотности для исходных атомных и образованных молекулярных орбиталей показан на рис. 24. Следует отметить, что поскольку складываются (вычитаются) орбитали (точнее волновые функции), то электронная плотность (характеризуемая квадратом волновой функции) между ядрами больше суммы плотностей электронных облаков изолированных атомов для тех же расстояний. На рис. 25 показано распределение /ектронной плотности в молекуле водорода На- Электронная плот- [c.48]

    Различия в свойствах элементов семейства, связанные с лантаноидным сжатием и характером заполнения 4/-орбиталей, конечно, невелики. Однако на общем фоне поразительно большого сходства эти различия имеют важное значение, в частности, для отделения лантаноидов друг от друга. [c.641]

    Метод валентных связей позволяет в простейших случаях определить пространственную структуру сложной молекулы или иона, руководствуясь характером орбиталей центрального атома [c.54]

    Для практических приложений особый интерес представляет исследование водных систем. Вода является сложным объектом для теоретического рассмотрения вследствие особого характера взаимодействия между ее молекулами. Квантовомеханические расчеты показывают, что гибридизация 2з- и 2р-орбиталей ато- [c.117]

    Химическая ионизация анализируемых соединений происходит в результате ион-молекулярных реакций с ионами, образующимися из газа-реактанта при давлениях около 10 Па, взаимодействующего с электронами с энергией 50—70 эВ. При этом концентрация газа-реактанта в источнике ионов должна по крайней мере в 10 раз превышать концентрации анализируемых веществ. Энергия, передаваемая нейтральным молекулам при взаимодействии с ионами в таких условиях, обычно значительно меньше, чем при электронном ударе, что проявляется в возрастании интенсивностей пиков молекулярных ионов и уменьшении глубины распада вещества. В качестве газов-реактантов чаше всего применяются сравнительно простые соединения СН4, U30- 4H10, N0, N2O, реже NH3, Н2О, D4, (СИз)481, ( H3)2NH, Не, Аг, N2, СО2 и другие (см. обзоры [12, 15]. В последнее время появились сообщения об использовании для этих целей более сложных органических веществ (бензол, циклогексан) [16, 17]. В зависимости от типа газа-реактанта (его потенциала ионизации, наличия атомов водорода, неподеленных электронных пар или вакантных орбиталей) характер образующихся из него ионов, их взаимодействия с веществом и, следовательно, вид спектра химической ионизации сильно меняются. В источнике ионов может осуществляться протонирование органических соединений, образование более сложных катионов либо реакция переноса заряда между ионами газа-реактанта и нейтральными органическими молекулами. [c.82]


    Валентными орбитадями углерода являются орбита- ли 25 и 2р. В случае, если атом углерода образует только о-связи, он должен иметь тетраэдрическое окружение (за счет гибридных 5рЗ-орбиталей). Характер связи в [c.168]

    Включение в молекулы соединений с сопряженными двойными связями гетероатомов изменяет уровни энергии их связывающих и разрыхляющих молекулярных орбита-лей и приводит к появлению несвязывающих молекулярных орбиталей. Эти изменения сопровождаются большим или меньшим батохромным или гипсохромным сдвигом полос поглощения в электронных спектрах и появлением новых полос, обусловленных электронными переходами с участием несвязывающих молекулярных орбиталей. Характер всех изменений зависит от природы гетероатома (электроотрицательности, наличия или отсутствия неподеленных пар электронов и доступных вакантных орбита-лей, валентности и координации), что определяется его положением в Периодической системе Д. И. Менделеева, и от положения гетероатома в сопряженной системе (в составе гетероцикла, на концах или в нециклических внутренних участках сопряженной системы, в четных или нечетных альтернантных системах). [c.58]

    Характер заполнения орбиталей атомов К, Са, и Зс показывает, что энергия электронов зависит не только от заряда ядра, но и от взаимодействия между электропами. На рис. 11 показана зависимость энергии атомных орбиталей от порядкового номера элемента (логарифмическая шкала). За единицу энергии электрона принято значение 13,6 эВ (энергия электрона пенозбуждеиного атО ма водорода). Анализ рис. II показывает, что с уаеличениеу порядкового но мера эле мента Z энергия электронов данного состояния (1,5, 2 , 2/ и т. д.) уменьшается. Одпако характер этого уменьшения для электронов разных энергетических состояний различен, что выражается в пересечении хода кривых. В частности, поэтому при Л = 19 и 20 кривые энергии 45-электрона лежат ниже кривой энергии З -электрона, а при 2 =. 21 кривая энергии Зсг-электрона лежит ииже к(1Ивой 4/7-электрона. Таким образом, у калия и кальция заполняется 4х-орби аль, а у скандия 3 /-орбиталь. [c.27]

    Энергия, длина и порядок связи. По характеру распределения злектронов по молекулярным орбиталям можно оценить энергию, ,лину и порядок связи. Как известно, нахождение электрона на связывающей орбитали означает концентрацию электронной плотности между ядрами, а это обусловливает сокращение межъядерного расстояния и упрочнение молекулы. Наоборот, нахождение электрона [а разрыхляющей орбитали означает, что электронная плотность онцентрируется за ядрами. В этом случае, следовательно, энергия связывания снижается, а межъядерное расстояние увеличивается  [c.50]

    При комбинации орбиталей р-тииа характер перекрывания 2р -ор-биталей существенно отличается от перекрывания 2ру- и 2/ г-ор-биталей. Комбинация атомных 2рх-орбиталей, которые вытянуты вдоль оси X, дает молекулярные сг-орбитали и [c.52]

    Пространственная конфигурация молекул и комплексов. Характер ги-бридишции валентных орбиталей центрального атома и их пространственное расположение определяют пространственную конфигурацию 1юлекул и комплексных ионов. Так, при комбинации одной 5- и одной р-орбитали возникают две р-гибридные орбитали, расположенные симметрично под углом 180° (рис. 48). Отсюда и связи, образуемые с участием электронов этих орбиталей, также располагаются юд углом 180°. Например, у атома бериллия ер-гибридизация орбитллей проявляется в молекуле ВеСЬ, которая вследствие этого имеет линейную форму  [c.73]

    О немонотонном характере изменения свойств в главных подгруи-иах свидетельствует, наиример, характер изменения энергетического различия внешних 5- и р-орбиталей (табл. 28), степеней окисления (табл. 29) и координационных чисел (табл. 30) з- и р-элементов в зависимости от их порядкового номера. [c.265]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Перекрывание 2р .-орбитали атома кислорода и ls-орбиталей диух атомов водорода приводит к возникновению молекулярных - и aJ P-орбиталей. Как видно из рис. 147, характер перекрывания 2s- и 2р -орбиталей кислорода одинаков. В результате образуются три молекулярные орбитали связываю-1ц.ая Oj , почти несвязывающая и разрыхляющая Орбиталь 2р , [c.312]

    Одинаковый характер гибридизации валентных орбиталей атомов предопределяет далеко идущую аналогию между простыми веществами р-элементов IV группы и соединениями, образованными элементами, равноотстоящими от IV группы. Так, межъядерное расстояние в кристаллах AIP (0,235 нм), GaAs (0,243 нм), InSb (0,280 нм) практически ] авно расстояниям в изоэлектронных им кристаллах Si (0,235 нм). Ge (0,245 нм) и a-Sn (0,280 нм). То же самое следует сказать о средней [c.466]

    По характеру распределения электронов по орбиталям Со ион СоРв " является высокоспиновым (четыре непарных электрона), а ион 1Со(ЫНз)в) низкоспиновым комплексом (непарные электроны отсутствуют). [c.508]

    В соответствии с характером распределения электронов по -орбиталям комплекс [Со(ЫНз)0 1 " диамагнитен, а комплексы 1СоРв1 , [Со(ЫНз)в] и [ o( N)в] " парамагнитны. Об этом же свидетельствуют экспериментальные данные. [c.508]

    В гл. 9 было показано, что свойства атомов удается объяснить характером атомных орбиталей. Еще раньше, в гл. 8, мы видели, что уравнение Шрёдингера дает набор волновых функций у, г), обладающих тем [c.511]

    Исследование заполненных электронами орбиталей по их связывающему или разрыхляющему характеру для определения эффективного числа связывающих электронов. (Некоторые разрыхляющие орбитали могут иметь более низкую энергию, чем другие связываюпще орбитали, и поэтому заполняются раньше них. Признаком связывающей орбитали является не более низкая энергия, а достижение минимума энергии при определенном межъядерном расстоянии, как показано на рис. 12-5, а.) Наличие двух нескомпенсированных связывающих электронов соответствует простой связи в рассмотренной выше модели Льюиса. [c.519]

    Если провести математические операции, выражаемые словами скомбинируем две атомные орбитали так, чтобы получить разрыхляющую и связывающие молекулярные орбитали , то обнаружится, что две такие атомные орбитали должны обладать достаточно близкими энергиями. В молекуле каждая из двух молекулярных орбиталей содержит 50%-ный вклад от Ь-орбитали каждого атома водорода. В противоположность этому если в молекуле АВ скомбинировать орбиталь атома А, обладающую очень высокой энергией, и орбиталь атома В с довольно низкой энергией, то математические выкладки покажут, что разрыхляющая молекулярная орбиталь представляет собой почти чистую исходную орбиталь атома А, а связывающая орбиталь - почти чистую исходную орбиталь атома В. Следовательно, пара электронов на такой связывающей орбитали в сущности находится вовсе не на настоящей ковалентной связывающей орбитали. На самом деле речь идет о неподеленной паре электронов на атомной орбитали атома В. Взаимодействие атомных орбиталей двух атомов с больщим различием в энергиях пренебрежимо мало. На примере молекулы НР мы увидим, что это означает, если принять во внимание частично ионный характер связи. [c.532]


Смотреть страницы где упоминается термин Орбитали S характер: [c.99]    [c.304]    [c.63]    [c.224]    [c.47]    [c.63]    [c.53]    [c.97]    [c.54]    [c.55]    [c.517]   
Химическая связь (0) -- [ c.177 ]

Химическая связь (1980) -- [ c.177 ]




ПОИСК







© 2024 chem21.info Реклама на сайте