Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Льюисовская кислота

    По электронной теории Льюиса, кислотой и основанием являются вещества, являющиеся соответственно акцептором и до — нором электронных пар. Льюисовские кислоты (Ь—кислоты) и основания могут не содержать протонов и, следовательно, являются апротонными. Кислотно — основное взаимодействие заключается в образовании донорно-акцепторной связи типа [c.90]

    Несомненно, что с химической точки зрения Zn + в ферментах выполняет роль льюисовской кислоты, создающей локализованный центр положительного заряда вблизи нуклеофильного центра субстрата . Эта функция иона металла обсуждается в разд. Г,4 при рассмотрении карбоксипептидазы (рис. 7-3). Ионы цинка необходимы также для функционирования термолизина (разд. Г,4), дипептидаз, щелочной фосфатазы (разд. Д,1), РНК-полимераз, ДНК-полимераз , карбоангидразы (рис. 7-8), альдолаз класса П (разд. К,2, в), некоторых алкогольдегидрогеназ (гл. 8, разд. 3,2) и супероксид-дисмутазы (дополнение 10-3). Известно, что цинк связывается и с гексамерами инсулина (рис. 4-13,В). [c.142]


    Для твердых кислот недостаточно выяснено различие и общность механизмов каталитического действия бренстедовских и льюисовских кислот. Так, по данным одних авторов [57 ] реакция дегидратации спиртов происходит только за счет апротонной кислотности Другие авторы [58] опровергают это утверждение. В ряде работ, например [59], указывается, что кислотные свойства гидратированной окиси алюминия и силикагеля не связаны с водородом их гидроксильных групп. [c.37]

    При реакции льюисовской кислоты с протонодонорными молекулами часто образуется очень сильная бренстедовская кислота [c.46]

    На практике никогда нельзя полностью исключить присутствие воды или другого донора протонов, и свойства льюисовских кислот на самом деле могут оказаться свойствами сопряженных бренстедовских кислот ниже мы покажем, что катализаторы Фриделя — Крафтса нуждаются в таких сокатализаторах. [c.47]

    Резюмируя, можно сказать, что льюисовские кислоты в отсутствие доноров протонов, по-видимому, не играют существенной роли в катализе. [c.47]

    Сильные льюисовские кислоты присутствуют либо в виде активных центров (разд. П.З. Б), либо как адсорбированные положительные ионы R+ или Н" , и наиболее вероятный механизм образования карбоний-иона будет рассмотрен ниже. [c.125]

    СНз)зС. Но современные данные по дейтерообмену и катализу гидридами металлов, проявляющими свойства кислот (см. ниже), указывают, что карбониевые ионы образуются при взаимодействии не с протоном, а с координационно ненасыщенными комплексами, которые могут образовывать как бренстедовские, так и льюисовские кислоты. [c.90]

    Графит с включениями галогенидов льюисовских кислот также можно использовать в качестве катализаторов алкилирования 19]. [c.27]

    Возможно разложение ПХД при контакте ОСМ с льюисовскими кислотами типа галогенидов металлов (хлориды и бромиды алюминия, железа, кальция и ряда других, а также их смеси). Процесс идет в присутствии спиртового раствора гидроксида металла, при температуре > 100°С. При высокой эффективности метода, обеспечивающего снижение содержания ПХД, например в отработанном трансформаторном масле с 500 до < 1 млн , его недостатком является сложность технологии. [c.362]

    Закономерности изменения кислотности Льюиса также связаны с положением элемента в периодической таблице это видно из сравнения силы льюисовских кислот общей формулы МХ [87]. [c.344]

    Известные пентагалогениды по химической природе являются типичными представителями льюисовских кислот и в то же время могут рассматриваться как кислотообразующие соединения соответствующих кислородсодержащих кислот, например  [c.294]

    Здесь донором электронной пары, т. е. основанием по Льюису, является аммиак, а в качестве льюисовской кислоты выступает акцептор электронной пары ВРз. Протонная теория кислот и оснований Бренстеда и электронная теория Льюиса дополняют друг друга и имеют глубокую внутреннюю связь. В определенном смысле кислоты по Бренстеду представляют собой частный случай льюисовских, поскольку протон характеризуется большим сродством к электронной паре и по Льюису может рассматриваться как сильная кислота. [c.266]


    Бензизоксазолы подвергаются термическому расщеплению цикла. При температуре плавления они могут превращаться в нитрилы салициловых кнслот (схема 101) в результате катализируемого основанием отрыва протона из положения 3 или под действием протонных и льюисовских кислот [97]. Кватернизованные [c.491]

    Льюисовская кислота представляет собой акцептор пары электронов, в отличие от кислоты по Бренстеду — донора протона. Основание по Бренстеду является акцептором протона. Так, в реакции [c.411]

    В водных растворах ионы металлов являются льюисовскими кислотами, а такие комплексные ионы, как Fe(N0)2 Сг(Н20)Г и А1К ", можно рассматривать как комплексы кислота — основание. Благодаря большой валентной оболочке атомов неметаллов, находящихся ниже второго ряда периодической таблицы элементов (3, Р, С1, Вг, I и т. д.), они могут проявлять свойства как кислот, так и оснований Льюиса. Ион 1 в реакции с ионами металлов (кислота Льюиса) может действовать как основание, давая весьма стабильные комплексы, такие, как ]ig(I) . С другой стороны, 1а может действовать как кислота в реакциях с донорами электронов, приводя к образованию комплексов с различной стабильностью. Равновесие к реакции I" - - 1а 1 в 0,1 М водном растворе сильно сдвинуто вправо (А рави = 140 л1молъ), АН° = — 4,0 ккал. [c.499]

    Но акцепторная (т. е. по типу льюисовских кислот) реакционная способность возникает тогда, когда появляется кезанятая атомная d-орбиталь вследствие перескока неспаренного электрона на уровень проводимости (связывающий уровень) металла. Как и в комплексах [c.32]

    В гомогенной жидкой фазе бренстедовские или льюисовские кислоты и основания ведут себя как довольно неспецифические катализаторы по отношгнию к большинству перечисленных выше реакций. Аналогичными свойствами обладают также твердые кислоты и основания, и их активные центры должны быть в значительной степени подобными классическим кислотным и основным функциональным группам. [c.36]

    Трамбуз [54] рекомендует для титрования льюисовской кислоты диоксан и уксусноэтиловый эфир (этилацетат) как типичные льюисовские основания. Конечная точка обнаруживается по отсутствию выделения тепла (температурного инкремента) при добавлении бензольного раствора основания к помещенной в дьюаровский сосуд суспензии твердого тела в бензоле. [c.56]

    Скорость кислотного катализа весьма чувствительна к апротон-ным кислотам Льюиса (ВРз, AI I3, А1Вгз и др.). Влияние льюисовских кислот объясняется тем, что они образуют с протонодонорны-ми веществами сильные бренстедовские кислоты, например  [c.91]

    Бромирование адамантаиа сильно катализируется льюисовскими кислота ми, 1Н0 не инициируется светом или перекисями. Следовательно, реакция протекает как электрофильное замещение, а не по радикальному механизму (Штеттер, 1960). При этом атакуются только третичные положения, благодаря чему с высоким выходом могут быть получены 1,3,5-трибром- и 1,3,5,7-тетрабромадамантаны. [c.60]

    Вышеприведенные механизмы относятся к так называемым брен-стедовоким кислотам или основаниям, содержащим, соответственно, ион Н+ или ОН . Как известно, в современной физической химии понятие кислот и оснований распространяют на соединения, не имеющие ионов Н+ и ОН , но способные быть акцепторами (кислоты) или донорами (основания) электронной пары. Такие кислоты и основания называют льюисовскими. Ввиду общности действия льюисовских кислот и оснований и дативных комплексов, в послед- [c.34]

    Ниридин - единственный ароматический растворитель, пригодный для электрохимических целей. Он, безусловно, представляет собой достаточно сильное основание, которое способно образовывать с ионами металлов льюисовские кислоты - основные аддитивные соединения. Хотя пиридин имеет довольно низкую диэлектрическую постоянную (12), он весьма универсальный растворитель. В нем растворимы многие соли, причем их растворы обладают низким сопротивлением. Ниридин находится в жидком состоянии в области температур от -41 до +115°С и характеризуется умеренно низким давлением паров при комнатной температуре. Но вязкости он подобен воде и растворяется в ней в любых пропорциях. Ниридин использовался в качестве среды для электролитического окисления и восстановления неорганических и органических соединений на ртутном, платиновом и графитовом электродах. Из пиридиновых растворов были электроосаждены следующие элементы Ы, Ка, К, Си, Ag, Mg, Са, Ва, 2п, РЬ и Ге [1]. Имеются некоторые указания на образование растворов электронов в пиридине [2.  [c.27]

    Очевидно, что комнлексообразователи акцепторно-донорнвго типа являются льюисовскими кислотами либо основа ниями и, наоборот, соответствующие кислоты и основания будут комплёксооб )азо-вателями. Таким образом, здесь скорее только терминологическое различие и специальное рассмотрение этих комплексообразоваТелей не требуется. [c.153]

    Алкилирование ароматических углеводородов олефинами широко описано в учебной и специальной литературе, в большом числе патентов. Реакция катализируется бренстедовской и льюисовской кислотами и протекает как в гомогенной, так и в гетерогенной фазе. Для последнего варианта характерны бренстедовские (Н3РО4) и льюисовские (ВРз) кислоты на носителях, а также [c.286]

    Типичная активность может быть либо у сильных оснований, либо у сильных кислот. Незаполненный катион может действовать как льюисовская кислота, в воде — как льюисовская кислота и со-катализатор, в диссоциированной воде — как бренстэдовская кислота, например  [c.26]


    Активность катализатора связана с его кислотной функцией. Сильные льюисовские кислоты присутствуют либо в виде активных центров, либо как адсорбированные положительные ноны Н+ или Н+ [22]. М. А. Калико и Т. В. Федотовой [31] показано, что стабильность алюмосиликатных катализаторов крекинга прежде всего зависит от устойчивости единичных активных центров. Последняя, в свою очередь, связана с дисперсностью частиц окисей алюминия и кремния, которые составляют эти центры. Активные центры, образованные при участии тонкодисперсных частиц окиси алюминия, крайне неустойчивы к термическому воздействию активные образования из крупнодисперсных частиц окиси алюминия более стабильны. [c.52]

    Активными компонентами катализаторов для прямого гидрообессеривания нефтяных остатков служат Ni, Со, Мо и W носителями— окиси алюминия и кремния, природные и синтетические алюмосиликаты. Носитель играет важную роль в механизме отложения кокса и металлов на поверхности катализатора. С увеличением активной поверхности, объема и радиуса пор гидрообессеривание улучшается, однако высокопористые катализаторы малопрочны. Интересны сообщения [153, 154] о том, что можно рассматривать как гидрирующий катализатор. Автор утверждает, что при щелочной обработке такой окиси алюминия образуются активные центры двух типов активный железный центр, вызывающий диссоциацию молекулы водорода окисноалю-миниевый центр (вероятно, льюисовская кислота), который может адсорбировать ненасыщенные углеводороды. Процесс гидрирования, по-видимому, протекает с переносом водорода между указанными центрами. [c.255]

    Все катализаторы ионных реакций являются изоляторами или ионными проводниками электрического тока. Наиболее распрост-рангны катализаторы кислотного типа, являющиеся протонными (бренстедовскими) или апротонными (льюисовскими) кислотами. [c.440]

    По существу, целью всех многочисленных теорий катализа, которые начали появляться еще в прошлом столетии, было предвидение каталитического действия. Но, пожалуй, началом решения этой задачи следует считать рекомендации по подбору катализаторов, которые содержались в мультиплетной теории А. А. Баландина, теории активных центров X. С. Тэйлора и 3. К. Ридила, в классификации каталитических процессов С. 3. Рогинского, а затем в ряде электронных теорий. В результате появились более или менее общие и проверенные выводы о специфическом характере каталитического действия определенных, правда, довольно обширных групп катализаторов, например, для реакций гидро- и дегидрогенизации, окисления, галогенироваиия — металлы и оксиды металлов— полупроводники для реакций гидратации — дегидратации, гидрогалогенирования, алкилирования алкилгалогенидами — бренстедовские и льюисовские кислоты и основания. Но подбор [c.248]

    Халькогениды Э2Х3 устойчивы на воздухе и во влажной атмосфере, нерастворимы в воде и разбавленных неокисляющих минермьных кислотах. Поскольку халькогениды являются льюисовскими кислотами, для них характерны реакции с образованием солей тиокис.дот, например [c.424]

    По мере уменьшения силы льюисовских кислот слева направо (табл.2.3) сужается набор активаторов из однотипных рядов, содействующих генерированию АЦ. Самая сильная кислота (BF3) вызывает ионизацию всех активирующих оснований [37] и в этом смысле нивелирует их индивидуальность. Очевидно, индивидуальность активирующих оснований (способность ионизироваться) нивелируется и в прямо противоположном случае - при использовании слабой кислоты Льюиса из-за низких акцепторных свойств. Кроме того, для R3AI и отчасти R2AI I характерна высокая подвижность органических групп при атоме А1. В случае кислот промежуточной силы (табл.2.3, Я А1С1з п при п<3) проявляется дифференцирующее действие кислоты Льюиса в отношении сокатали-тических добавок, наблюдается различная способность их к ионизации и, следовательно, инициированию электрофильного процесса. [c.44]

    ВРз есть льюисовская кислота [1]. Ионы металлов в водных растворах являются кислотами, а такие комплексные ионы, как Fe(NOf , Сг(Н20)б , AIFi можно считать комплексами кислота — основание. [c.411]


Смотреть страницы где упоминается термин Льюисовская кислота: [c.14]    [c.102]    [c.46]    [c.55]    [c.35]    [c.40]    [c.235]    [c.283]    [c.354]    [c.348]    [c.456]    [c.275]    [c.306]    [c.39]   
Биохимия Том 3 (1980) -- [ c.142 ]




ПОИСК







© 2025 chem21.info Реклама на сайте