Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислота бренстедовские

    Старейший метод алкилирования этиленом заключается в проведении реакции в жидкой фазе с безводным хлористым алюминием в качестве катализатора. Эта реакция является частным случаем классической реакции Фриделя — Крафтса, она была открыта в 1879 г. Большинство из известных льюисовских и бренстедовских кислот активны в алкилировании олефинами. Однако для катализа жидкофазного алкилирования бензола э иленом хлористый алюминий оказывается предпочтительнее других кислот, хотя для повышения его эффективности обычно требуется применять сока-тализаторы или промоторы. При растворении хлористого алюминия в бензоле туда добавляют соляную кислоту , образующую [c.268]


    Кислотно-основные свойства катализаторов. Сведения о кислотности часто необходимы при оценке свойств катализаторов. Активность и селективность катализаторов в реакциях крекинга органических соединений, изомеризации, полимеризации, дегидратации и других находятся в непосредственной связи с их кислотными свойствами. В настоящее время общепризнанным является принцип родственности механизмов гомогенного и гетерогенного кислотного катализа. Поэтому, по аналогии с гомогенным катализом, в гетерогенном катализе используются такие понятия, как кислота Бренстеда , кислота Льюиса и, соответственно, бренстедовские и льюисовские кислотные центры. Однако вопросы структуры кислотных точек на поверхности катализаторов, возможность перехода одного типа кислотных центров в другой, а также их влияние на поведение катализатора в процессе все еще остаются дискуссионными. [c.381]

    Расположите бренстедовские кислоты, входящие в эти уравнения, в порядке возрастания силы кислот. [c.264]

    Если реакция катализируется бренстедовской кислотой или основанием, то это явление носит название общего кислотного или основного катализа. Одной из первых изученных реакций, подвергающихся такому общему кислотно-основному катализу, была реакция мутаротации оптически активной глюкозы  [c.480]

    Константа этого равновесия служит мерой основности аминов и называется константой основности (Кв)- В качестве меры основности часто используют величину р/< в = -Чем сильнее основание, тем больше/Св и меньше р/Св. В воде хорошо растворяются только низшие амины, высшие амины в воде растворяются плохо, поэтому бренстедовскую основность удобнее определять по кислотности сопряженной кислоты р/Свн +, так как р/Св+ р/Свн + = 4. См. [3], с. 708 [8], с. 94 - 97. [c.224]

    В 1949 г. Кольтгоф писал Несомненно, еще не сказано последнее слово относительно механизма кислотно-основной реакции. Пр крайней мере спорно, является ли первичной реакцией между основаниями и бренстедовскими кислотами прямой перенос протона. Первичная реакция между кислотами и основанием может состоять в образовании водородной связи. В основных растворителях с высокой диэлектрической проницаемостью кислота реагирует с растворителем — основанием с первичным образованием водородной связи. Вслед за этим происходит диссоциация с образованием сольватированного протона и основания, сопряженного с кислотой. Однако в растворителях с низкой диэлектрической проницаемостью кислота и основание могут реагировать с образованием устойчивого продукта присоединения через водородную связь. Даже в водной среде нередко имеют место реакции, связанные с образованием водородной связи. Таково, например, взаимодействие между водой и аммиаком. [c.300]


    С целью выяснения природы каталитической активности цеолита HY в реакции окисления бензилового спирта исследовано влияние на активность катализатора различных факторов степени обмена ионов Na на Н в исходном NaY, адсорбции пиридина и воды, предварительной термообработки водородом [259]. Показано, что каталитическая активность цеолита HY, под которой подразумевается суммарный выход бензальдегида и бензойной кислоты, уменьшается на 60% при обработке цеолита водородом при 500° С в течение 15 ч. Это явление аналогично дезактивирующему влиянию высокотемпературной водородной обработки цеолита в реакциях гидрирования, о чем говорилось выше. При обмене 40-60% ионов Na в цеолите происходит заметное увеличение выхода продуктов окисления, а также бензилового эфира и толуола. Пиридин вызывает снижение каталитической активности цеолита HY, а введение в реакционную систему воды увеличивает выход бензилового эфира и снижает выход продуктов окисления. Изучено влияние температуры прокаливания цеолита HY на его каталитические свойства. Оказалось, что предварительное прокаливание при 450°С приводит к повышенной активности катализатора в образовании бензилового эфира, а выход бензальдегида увеличивается с повьпцением температуры прокаливания в интервале 500-550°С. Эти результаты указывают, по-видимому, на то, что реакция дегидратации бензилового спирта осуществляется на бренстедовских кислотных центрах, а его окисление происходит с участием льюисовских центров. [c.107]

    Такого рода наблюдения привели к тому, что реакции этого типа получили название реакций кислотного или основного катализа. Когда катализ связан с частицами Н" (или ОН ), говорят, что реакция подвергается специфическому катализу ионами Н" (или ОН ). Многие реакции как в органической, так и в неорганической химии попадают под это определение. Однако уже самые первые работы с такого рода системами [27] вскоре показали, что катализ не ограничивается ионами Н" и ОН, а может быть вызван другими частицами, которые могут быть отнесены к числу так называемых бренстедовских кислот или оснований. [c.480]

    По существу, целью всех многочисленных теорий катализа, которые начали появляться еще в прошлом столетии, было предвидение каталитического действия. Но, пожалуй, началом решения этой задачи следует считать рекомендации по подбору катализаторов, которые содержались в мультиплетной теории А. А. Баландина, теории активных центров X. С. Тэйлора и 3. К. Ридила, в классификации каталитических процессов С. 3. Рогинского, а затем в ряде электронных теорий. В результате появились более или менее общие и проверенные выводы о специфическом характере каталитического действия определенных, правда, довольно обширных групп катализаторов, например, для реакций гидро- и дегидрогенизации, окисления, галогенироваиия — металлы и оксиды металлов— полупроводники для реакций гидратации — дегидратации, гидрогалогенирования, алкилирования алкилгалогенидами — бренстедовские и льюисовские кислоты и основания. Но подбор [c.248]

    Катализаторы на основе кислот Льюиса, активные при полимеризации олефинов, обладают значительно меньшей активностью при изомеризации, чем бренстедовские кислоты. [c.89]

    Для твердых кислот недостаточно выяснено различие и общность механизмов каталитического действия бренстедовских и льюисовских кислот. Так, по данным одних авторов [57 ] реакция дегидратации спиртов происходит только за счет апротонной кислотности Другие авторы [58] опровергают это утверждение. В ряде работ, например [59], указывается, что кислотные свойства гидратированной окиси алюминия и силикагеля не связаны с водородом их гидроксильных групп. [c.37]

    Кольтгоф предложил изменить терминологию и объединить теории Бренстеда и Льюиса, сохранив бренстедовское определение кислоты как вещества, состоящего из протона (или нескольких протонов) и основания. [c.472]

    Вода, координационно связанная с льюисовским кислотным центром, может диссоциировать, и это создает новый бренстедовский кислотный центр ( ). Хорошо известно, что аквакомплексы более кислотны, чем сама вода [33]. Например, для [А1(Н20)в] значение р/С равно 4,9, а для [Сг(Н20)б1 р/Сд = 3,9, но эти кислоты должны быть очень слабыми, если только ноле соседних анионов иоверхности не способствует отделению протонов. [c.48]

    При реакции льюисовской кислоты с протонодонорными молекулами часто образуется очень сильная бренстедовская кислота [c.46]

    На практике никогда нельзя полностью исключить присутствие воды или другого донора протонов, и свойства льюисовских кислот на самом деле могут оказаться свойствами сопряженных бренстедовских кислот ниже мы покажем, что катализаторы Фриделя — Крафтса нуждаются в таких сокатализаторах. [c.47]

    При реакции льюисовского кислотного центра с водородсодержащим галогенидом могут образоваться гораздо более сильные бренстедовские кислоты, как было указано в предыдущем параграфе для случая гомогенного катализа. [c.49]

    СНз)зС. Но современные данные по дейтерообмену и катализу гидридами металлов, проявляющими свойства кислот (см. ниже), указывают, что карбониевые ионы образуются при взаимодействии не с протоном, а с координационно ненасыщенными комплексами, которые могут образовывать как бренстедовские, так и льюисовские кислоты. [c.90]

    Исключительна роль водорода и в химическом отношении. Если атомы всех остальных элементов (кроме химически инертного гелия) под валентной оболочкой имеют электронный остов предыдущего благородного газа и размеры их положительных ионов не намного меньше размеров нейтральных атомов, то ион Н представляет собой просто протон, размеры которого примерно в 10 раз меньше размеров атома. Поэтому положительно поляризованный атом водорода обладает исключительно сильно выраженным поляризующим действием, что является одним из основных мотивов в химии этого элемента, С этим связаны такие особые свойства элемента, как образование водородных связей, "ониевых" соединений (оксоний, аммоний и т.п.), протолитические реакции, протонная (бренстедовская) концепция кислот и оснований и пр. [c.292]


    Это уравнение отличается от соответствующего бренстедовского уравнения для катионных кислот учетом энергии взаимодействия молекул оснований с растворителем. [c.350]

    Цеолитсодержащие катализаторы. Использование концентрированных кислот (H2SO4, НР) в процессе производства алкилата вызывает ряд проблем. Их, возможно, не возникнет при алкилировании на цеолитсодержащих катализаторах. Как известно, каталитическая активность цеолитов обусловлена бренстедовскими кислотными центрами. На этих центрах образуется промежуточный карбоний-ион, который участвует во многих реакциях, в том числе и алкилирования. Исследования показали возможность применения цеолитсодержащих катализаторов для алкилирования бензола пропиленом взамен AI I3, обладающего рядом недостатков при эксплуатации. [c.305]

    Позднее другие исследователи пришли к выводу о необходимости сохранения бренстедовского определения кислот и о целесообразности выделения группы веществ, подобных кислотам. [c.79]

    Более того, Хиршлер [58] ставит под сомнение само существование льюисовских центров, указывая, что следы кислорода либо в реагентах, либо на поверхности катализатора легко могут окислить трифенилметан до трифенилкарбинола бренстедовская кислотность должна привести к образованию карбоний-иона. Как известно, такая реакция действительно происходит в кислотных средах, в которых сила кислоты больше, чем в 50%-ной N2804, и процесс этот ускоряется при действии света. Удаление гидрид-иона заменяется окислением, катализируемым кислотой, и для этого необходимы сильные бренстедовские кислотные центры. [c.58]

    Позиция Г. А. Ола основывается на представлении о так называемых суперкислотах, или сверхкислотах, сложной природы. Сунеркислотиый центр включает как центр Бренстеда, так и льюисовский кислотный центр, причем кислотность Льюиса усиливает бренстедовскую кислотность 181. С этой точки зрения и(шлгкатионно-декатионированные формы цеолитов, обладающие бренстедовосой и льюисовской кислотностью, также можно рассматривать как суперкислоты. Наличие кислоты Льюиса в структуре активного центра позволяет по новому подойти к вопросу гидридного переноса при алкилировании. [c.347]

    Как было показано выше, простейшая бренстедовская кислота НС1, неактивная в полимеризации олефиновых и виниловых мономеров, приобретает каталитические свойства при иммобилизации, приводящей благодаря эффекту координации к увеличению концентрации протонов и скорости инициирования, а также замедлению реакции ионов 1 с растущим полимерным карбкатионом, т.е. торможению обрыва цепи. [c.58]

    Первое направление предполагает обратимую фиксацию комплексной кислоты из раствора полимером-лигандом, второе - образование комплексной кислоты из химически присоединенных к полимеру льюисовских и бренстедовских групп. [c.63]

    NH3 — основание. Т. о., Бренстед и Льюис подходят к оцределению К. и о. с разных точек зрения. Если, согласно Бренстеду, кислотные свойства связываются с наличием протона, то, по Льюису, эти свойства обусловливаются исключительно строением реагирующих молекул, определяющим их электронно-акцепторные свойства, и вовсе не связываются с присутствием в них к.-л. определенного элемента, и в частности водорода, могущего отщепиться в виде протона. Однако оба подхода (по Бренстеду и по Льюису) имеют между собой внутреннюю связь, к-рая состоит в том, что сам протон, как и другие льюисовские кислоты, характеризуется большим сродством к электронной паре. (В современной литературе принято указывать, о какой кислоте — бренстедовской или льюисовской — идет речь отсутствие же таких указаний приводит к путанице). Кроме этих двух общепринятых подходов к классификации веществ по кислотно-основным свойствам, существуют также и нок-рые другие (теория Э. К. Франклина, взгляды М. И. Усановича, [c.291]

    Однако помимо этого количественного фактора, зависящего от числа кислотных активных мест, имеется дополнительный качественный фактор, представляющий функцию специфической силы индиридуальных кислотных центров. Сила кислот определяется силами связи и непосредственно зависит от химического потенциала. В кислотах бренстедовского типа сила кислоты определяется степенью свободы протона. Особенное значение в обсуждаемом случае имеют экспериментальные результаты, приводящие к выводу о том, что кислота, присутствующая в алюмосили-катной структуре, очень сильна. Так, отмечено [9, 12], что [c.196]

    Пентафторид тантала ТаРз представляет собой твердое вещество белого цвета (т. пл. 97°С). Кислотные свойства этого фторида объясняются координационной ненасыщенностью крупного атома металла, окруженного лишь десятью электронами. Положительный заряд на атоме тантала также увеличен из-за присутствия пяти крайне электроотрицательных атомов фтора. Вследствие этого тантал способен пр исоединять анион какой-либо бренстедовской кислоты, например НР, и генерировать протон, обладающий достаточной активностью для (протонирования слабоосновного растворителя — фтористого водорода  [c.149]

    В гомогенной жидкой фазе бренстедовские или льюисовские кислоты и основания ведут себя как довольно неспецифические катализаторы по отношгнию к большинству перечисленных выше реакций. Аналогичными свойствами обладают также твердые кислоты и основания, и их активные центры должны быть в значительной степени подобными классическим кислотным и основным функциональным группам. [c.36]

    Алкилирование ароматических углеводородов олефинами широко описано в учебной и специальной литературе, в большом числе патентов. Реакция катализируется бренстедовской и льюисовской кислотами и протекает как в гомогенной, так и в гетерогенной фазе. Для последнего варианта характерны бренстедовские (Н3РО4) и льюисовские (ВРз) кислоты на носителях, а также [c.286]

    Кроме того, представляется сомнительным, чтобы Нд-индикаторы )еагировали только с бренстедовскими кислотами, а тогда титрование Зенеси или Хиршлера дает общую кислотность (Ь + В) так же, как и опыты с хемосорбцией КНд. [c.54]

    Скорость кислотного катализа весьма чувствительна к апротон-ным кислотам Льюиса (ВРз, AI I3, А1Вгз и др.). Влияние льюисовских кислот объясняется тем, что они образуют с протонодонорны-ми веществами сильные бренстедовские кислоты, например  [c.91]

    Слабые твердые кислоты относятся к числу наиболее стабильных возбудителей катионной полимеризации в интервале 320-575 К, что связано с отсутствием в их структуре лабильных группировок. Активность кислот в процессах олигомеризации олефинов невысока [39]и сильно зависит от состава катализатора и условий его приготовления[40]. Идентификация кислотных центров позволяет отнести слабые твердые кислоты к комплексным катализаторам. Например, на дегидратированной поверхности А12О3 присутствуют координационно-ненасыщенные атомы А1-льюисовские кислотные 2-центры, которые в присутствии воды (остаточной или введенной) способны переходить в комплексные бренстедовские кислоты  [c.45]

    Все катализаторы ионных реакций являются изоляторами или ионными проводниками электрического тока. Наиболее распрост-рангны катализаторы кислотного типа, являющиеся протонными (бренстедовскими) или апротонными (льюисовскими) кислотами. [c.440]

    Условный ряд катионных иммобилизованных катализаторов начинается от простейшей Н-кислоты воды. В этой связи заметим, что, хотя концепция нанесенных катализаторов сформировалась как направление для металлокомплексных систем [106], нанесенные катализаторы были известны гораздо раньше. Твердые кислоты минерального происхождения с поверхностными льюисовскими и бренстедовскими центрами, по существу, являются первым примером иммобилизованных систем, на которых была установлена зависимость кислотно-каталитических свойств от природы носителя [40]. Хотя при формировании иммобилизованных катализаторов используются различные способы фиксации кислотного компонента - от пропитки, импрегнирования, интерколяции до химического ковалетного связывания, можно проследить общий характер влияния носителя на поведение катализатора. Являясь основанием или имея в своем составе места разной степени основности, подложка вступает с катализатором в кислотно-основные взаимодействия, зависящие от химической и физической природы компонентов. Благодаря наличию спектра кислотных (основных) свойств компонентов происходит отбор кислотно-основных взаимодействий в соответствии с известной концепцией жестких и мягких кислот и оснований (ЖМКО) [107]. В итоге подложка выступает как макролиганд, увеличивающий размеры ионов и стабилизирующий их. Как следствие, имеет место повышение кислотной силы и каталитической активности систем. [c.55]

    Катализ на твердых кислотах и основаниях. Для катализаторов кислотно-основного типа специфика твердого тела не выражена так резко, как для полупроводников и металлов. Активные центры кислотных кат. представляют подвижные протоны И (центры Бренстеда) или атомы, способные присоединять пару электронов (центры Льюиса), напр, атом А1 на пов-сти AljOj. Соотв. основными центрами являются акцепторы протона или доноры электронной пары, напр, атомы кислорода на пов-сти СаО, MgO и т.п. Кислотными бренстедовскими центрами простых оксидов металлов являются поверхностные гидроксильные группы, остающиеся после частичной дегидратации пов-сти при нагр., или молекулы Н О, координационно связанные с пов-стью. Для металла М, находящегося в начале каждого периода, гидроксильные группы имеют основные св-ва [...ОМ] [ОН] для находящегося в конце периода-кис-лотные [...ОМО] Н . Льюисовскими кислотными центрами служат координационно-ненасыщенные ионы, напр. A10J на AljOj. Эти центры способны взаимод. с реагирующей молекулой-донором пары электронов. Кислотными катализаторами являются оксиды металлов с большим отношением заряда иона к его радиусу - окси ды Мо, Zn, Са, РЬ и др. Их активность связана с положением металла в периодич. системе и возрастает в периодах при переходе к V-VII группам, а в группах-при переходе к [c.540]

    Координация НХ с металлами, солями и другими компонентами придает минеральным кислотам свойства катализатора полимеризации катионактив-ных мономеров [53], при этом бренстедовские АЦ формируются по стандартной схеме  [c.47]

    Общая тенденция увеличения каталитических свойств катионных систем полимеризации в присутствии подходящих сокатализаторов соблюдается и для нанесенных кислот Льюиса. Это проявляется, например, в существенном повышении кислотных свойств (до уровня суперкислот) и активности соединений SbF5, BF3 и других, включенных в графит, в присутствии протонодонорных добавок [154]. Реальные активные центры нанесенных кислот представляют динамическое сочетание льюисовских и бренстедовских центров, возникающих в процессе термообработки каталитических систем в присутствии воды, например для системы AIF3II носитель (Н2О) [128]  [c.61]


Смотреть страницы где упоминается термин Кислота бренстедовские: [c.183]    [c.291]    [c.46]    [c.47]    [c.50]    [c.35]    [c.40]    [c.383]    [c.789]    [c.1678]    [c.75]   
Инженерная химия гетерогенного катализа (1971) -- [ c.34 , c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Бренстедовские кислоты и основани

Методы независимого определения бренстедовских и льюисовских кислот



© 2025 chem21.info Реклама на сайте