Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфид, включение

    Глинистые примеси и включения наиболее распространены. В более крупных трещинах часто встречается глина или гомогенная смесь угля и глины. На поверхности угольных кусков иногда наблюдаются белые кварцевые отложения. Из других минеральных включений в угле необходимо отметить гипс, силикаты и сульфид железа, который чаще находится в виде пирита, а реже в виде марказита. Учитывая способ, которым связаны минеральные вещества, Аронов и Нестеренко [6, с. 43] разделяют их на следующие три группы  [c.73]


    Таким образом, отказы трубопроводов и оборудования ОНГКМ в большинстве случаев обусловлены отсутствием эффективного ингибирования в условиях воздействия сероводородсодержащих сред на металлоконструкции из коррозионно нестойких сплавов, содержащих дефекты. Твердые структурные составляющие, неметаллические включения (сульфиды, оксисульфиды и т. п.) и расслоения являются очагами возникновения водородного растрескивания металла. Поверхностные дефекты (риски, волосовины, раскатанные загрязнения) способствуют появлению и развитию сероводородного растрескивания. Очагами сероводородного растрескивания сварных соединений трубопроводов и деталей оборудования являются так- [c.66]

    Черновой никель содержит благородные металлы, селен, сульфиды и окислы никеля, меди и железа, серу, кремнекислоту, а также включения шлака. Основной анодной реакцией является ионизация никеля, которая протекает с перенапряжением,т. е. при значительно более положительном потенциале, чем равновесный (еа = 0,1 -ь0,2 В). Поэтому в раствор переходят не только никель и металлы, потенциалы которых более отрицательны, но частично и почти все примеси, включая медь. Это приводит к тому, что раствор содержит наряду с 65—70 г/л N1 также 0,2—0,3 г/л Со, 0,3— 0,8 г/л Си и 0,3—0,5 г/л Ре. [c.291]

    При анодном растворении металла микрорельеф его поверхности обычно ухудшается по сравнению с исходным состоянием, вследствие электрохимической неоднородности этой поверхности, что имеет место даже у самых чистых металлов. Наличие неметаллических включений (микрочастицы шлака, карбидов, сульфидов, остатки окалины и т. д.) весьма усиливает указанную неоднородность. Поэтому на аноде при электролизе образуются всевозможные гребни, впадины, появляются точечные изъязвления (питтинги) и т. д. [c.342]

    Нахождение в природе. Элементы данной подгруппы не имеют собственных значительных месторождений и в виде редких и рассеянных примесей и включений содержатся в рудах и залежах других элементов. Исключение составляет ванадиевое месторождение патронита в Перу. Главным источником ванадия являются железные руды, где содержание ванадия колеблется в пределах от 0,1 до 0,2%. Перуанский патронит представляет собой сульфид ванадия. [c.304]

    Анодный процесс сопровождается образованием шлама. Количество шлама достигает 2—5% от веса растворившихся анодов. Шлам состоит из содержащихся в анодах сульфидов, окислов, шлаковых и других включений, а также содержит металлы платиновой группы, которые, являясь значительно более электроположительными, чем никель, не растворяются на аноде. В п лам переходит до 1% от содержания в анодах никеля, кобальта и железа и 5—20% меди. Основными компонентами шлама являются сульфиды этих металлов. При электролизе металлических анодов содержащиеся в них примеси сульфидов почти не растворяются, поэтому переход металлов в шлам и количество последнего резко возрастают с увеличением содержания серы в металлических анодах. На практике стремятся не допускать содержания серы в анодах выше 1%. [c.79]


    Растворение сульфидных анодов. При содержании серы в никелевых анодах ниже 15—18% сульфид никеля не образует сплошной массы в структуре анода и разделен значительными включениями металлического сплава, пронизывающими тело анода. В этих условиях анодное растворение идет с ионизацией, в основном, металлов, входящих в состав металлического сплава, а не в состав сульфидов, так как этот процесс требует меньшего анодного потенциала, чем растворение сульфидов. Анод в целом ведет себя как металлический, и сульфиды преимущественно переходят в шлам. , . [c.79]

    При содержании серы свыше 20—23% количество металлического сплава весьма невелико, и он имеет вид небольших включений в сульфидной массе, образующей структуру анода. При этом растворение происходит с ионизацией основной массы сульфида никеля, и такой сульфидный анод растворяется достаточно полно, [c.79]

    Наибольшее распространение получила пенная флотация, которую проводят следующим образом. Измельченную породу, содержащую рудные включения, перемешивают с водой до получения густой суспензии (пульпы),через которую непрерывно, снизу вверх, пропускают поток пузырьков воздуха. Добавление специальных пенообразователей создает условия для образования в пульпе пены с очень большой суммарной площадью границы раздела вода — воздух. Частички руды, содержащей чистые металлы или их сульфиды (вещества неионогенной структуры), смачиваются водой хуже, чем частицы пустой породы (кварц, алюмосиликаты). Поэтому частицы руды прилипают к пузырькам пены, всплывают вместе с ними и собираются в специальном отделении. [c.64]

    В данном случае ядро представляет собой частица сульфида мышьяка (И1). Гидросульфид-ионы образуют первичный слой адсорбированных ионов. Вместе с этими ионами и связанными противо-ионами гидроксония ядро образует коллоидную частицу (гранулу), включенную в фигурные скобки. [c.129]

    Фазовый анализ. В отличие от элементного анализа цель фазового анализа — разделение и анализ отдельных фаз гетерогенной системы, например железной или марганцевой руды, сплава, шлака и др. Основной областью применения фазового анализа является изучение распределения легирующих элементов в многофазных сплавах, определение зависимости количества, дисперсности и состава фаз от термической и механической обработки, вариаций химического состава, влияния различных добавок на свойства вещества. С помощью фазового анализа определяют также количество и состав неметаллических включений в металлах (оксидов, сульфидов, нитридов, карбидов), выделяют фазы в свободном состоянии. [c.824]

    Композиционные (комбинированные) электрохимические покрытия (КЭП) представляют собой осадки металла, содержащие включения большого числа мелких инертных частиц, так называемой второй фазы. В зависимости от назначения КЭП в качестве второй фазы используют различные вещества и соединения. Комбинированные покрытия позволяют улучшать поверхностные свойства изделий путем совмещения свойств гальванопокрытий со свойствами других материалов. Так, в технике используют износостойкие и твердые композиционные покрытия никель —алмаз никель — карборунд, никель — корунд, само-смазывающиеся покрытия с пониженным коэффициентом трения, никель — сульфид молибдена, медь — графит, термостойкие покрытия никель —карбид кремния или вольфрама, антикоррозионные покрытия и др. [c.271]

    Механика разрушения твердых тел рассматривает металлы и сплавы как однородные системы, без учета того, что реальные материалы имеют дефекты различного происхождения остроконечные полости и неметаллические включения (оксиды, сульфиды, силикаты, нитриды и т. д.). Дефекты в реальных телах понижают их прочность, а случайность дефектности обусловливает разброс величин прочности образцов и деталей, изготовленных из одного и того же материала. Опасность дефектов в первую очередь состоит в том, что в них реализуется существенная концентрация напряжений, т. е. дефекты во многих случаях являются источниками разрушения. В частности, неметаллические включения способствуют образованию трещин при сварке, термообработке, периодическом и динамическом нагружении. Однако в ряде случаев неметаллические включения оказывают и упрочняющее воздействие. [c.8]

    Смесь хлористых амилов, водного (не слишком концентрированного) раствора сульфгидрата натрия и этанола перемешивают в автоклавах 1 при 140—150° в течение 5 час. После завершения реакции содержимое автоклавов переводят в куб 2, где под небольшим избыточным давлением (не более 0,5 ат) отгоняют сероводород. Сероводород улавливается в абсорбере 3, состоящем из трех колонн. Первая колонна орошается циркулирующим амилсульфидом для улавливания амиленов. Вторая колонна орошается 15%-ным, а третья 3%-ным раствором едкого натра. Когда содержание щелочи в растворе, орошающем третью колонну, снизится до 1,75%, а содержание сульфида натрия возрастет до 21%, поглотительный раствор насосом перекачивается в расходный бак 4 для раствора сульфигидрата натрия. Содержимое второй колонны переводится в третью, а из бака 5 подается свежий 15%-ный раствор едкого натра для орошения второй колонны. После третьей колонны включен адсорбер, заполненный активированным углем, для улавливания последних следов органических сернистых соединений. Реакционная смесь перегоняется с водяным паром в кубе 2. Водный остаток после обработки хлором для разложения всех дурно пахнущих [c.228]


    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]

    Было обнаружено, что в нейтральных растворах хлоридов включения серы в прокатанную сталь действуют как инициаторы питтингообразования [36,37]. С другой стороны, отмечено, что, примесь серы в стали, содержащей более 0,01 % Си, не оказывает существенного влияния на скорость коррозии в кислотах [33, 38]. Измерения скорости проникновения водорода сквозь катодно-поляризованную. листовую сталь, содержащую игольчатые включения (РеМп)8, показывают, что НаЗ, образующийся на поверхности металла в результате растворения включений, стимулирует (промотирует) проникновение водорода в сталь. Скорость проникновения увеличивается с повышением содержания серы в пределах 0,002—0,24 % 8, но только на тех участках, где поступление На8 идет в результате растворения включений [39]. Включе-ння игольчатых сульфидов способствуют водородному охрупчиванию, которое может приводить к быстрому или постепенно развивающемуся растрескиванию, например, стальных трубопроводов [40]. [c.125]

    Наряду с коррозионными повреждениями газопромысловых металлических конструкций наблюдаются их механические разрушения, которые в большинстве случаев происходят при опрессовке трубопроводов и оборудования и обусловлены их несоответствием техническим условиям на поставку. Разрушение трубопровода 0219x16 мм из стали 20 отечественной поставки произошло при его опрессовке вследствие наличия в металле трубы большого количества расслоений, возникших при прокатке металла в местах неметаллических включений. Подобное разрушение трубопровода 0168x9 мм, сооруженного из импортных труб (Испания), также было вызвано наличием в стали неметаллических включений и заводских дефектов (закаты и риски). Трещины, возникшие поперек сварного шва крана фирмы Огоше при опрессовке, были инициированы дефектами металла сварного соединения (поперечные трещины и цепочка пор), а также охрупченным состоянием основного металла, содержавшего большое количество сульфидов. [c.45]

    Существенным фактором, влияющим на склонность стали к водородному растрескиванию, является форма сульфидных включений. Испытания трубной стали 16Г2САФ с практически одинаковым содержанием серы показали, что вредное влияние водорода на сталь с эллипсообразными сульфидами на 10—40% ниже, чем на сталь с пластинчатыми сульфидами [8]. Для получения сульфидов различной формы выплавляли стали по обычной технологии н с обработкой синтетическим шлаком. Влияние формы сульфидов объясняется тем, что пластинчатые сульфиды имеют большую поверхность разде- -ла со стальной матрицей, чем эллипсообразные включения. [c.24]

    Однако не все обогащенные витринитовой группой антрациты способны к трехмерному упорядочению при графитации. Так, например, при термообработке витринизированных антрацитов термального метаморфизма структурные изменения протекают при температуре ниже на 200-300 С, а после 2700 С прекращаются, не достигая параметров, получаемых у антрацитов других видов [3-16]. В том же порядке происходит и изменение текстуры. Аналогичное поведение при графитации наблюдается у фюзинизированного горловского антрацита. Минеральные примеси при содержании сульфидов до 1%(масс.) активируют структурные изменения при нагревании, и они начинаются при 1200-1570 С. Вероятно, сдвиговые изменения слоев, облегчающие процессы полигонизации, связаны с действием внутренних напряжений при нагревании. Включения же минеральных веществ способствуют возникновению внутренних напряжений в антраците. Последнее доказывается результатами исследований распределения напряжений в антраците поляризационнооптическим методом [3-19]. Хорошо разрешаемые в электронном микроскопе пакеты слоев имеют параметры а и Ьс, которые значительно превышают расчетные, полученные рентгеноструктурным анализом (рис. [c.174]

    Добавление к селениду мышьяка галлия и бора, образующих донорно-акцепторные связи, приводит к тому, что в его каркасную структуру включаются тетраэдрические структурные единицы, сквозная проводимость при этом повышается. Примесь от 10 до 1 ат. % меди к сульфиду мышьяка повышает электропроводность от 10 5 до Ом- -см2. Но в ряде случаев примесь 1—3 ат.% элементов II—III групп не влияет на электропроводность халькогенидных стекол, чем они резко отличаются от полупроводников, свойства которьй резко изменяются примесями. По-видимому, это связано с тем, что атомы примесей оказываются захваченными молекулярными включениями, обособленными от проводящего каркаса халькогенидного стекла. [c.120]

    Применение сильнощелочного раствора N358 в качестве группового реагента несколько раздвигает рамкн катионов V группы за счет включения в нее ионов Hg ". Сульфид ртути (II) растворяется в таком растворе с образованием тиосоли по реакции [c.311]

    Особенность коррозии в реальных условиях заключается в том, что разрушение металла происходит неравномерно. На его поверхности образуются глубокие поры и каналы. Поэтому часто изделие перестает выполнять свои функции, хотя общее количество прокор-родировавшего металла относительно мало. Это обусловлено тем, что твердые металлы и особенно сплавы отличаются неоднородностью своего состава и структуры. Металлы состоят из кристаллических зерен различной величины, которые выходят на поверхность различными гранями, отличающимися своими физико-химическими свойствами. Кроме того, эти зерна содержат различные дефекты кристаллического строения. Наконец, в металлах присутствуют различные примеси, неравномерно распределенные по объему, макродефекты и неметаллические включения в виде оксидов, сульфидов и т. п. [c.273]

    Чувствительность к водородному охрупчиванию значительно зависит от качества стали. Поэтому часто наблюдается различная склонность к водородному охрупчиванию сталей, близких по химическому составу. Весьма важна форма неметаллических включений в стали, особенно сульфидов. При обычной выплавке стали сульфиды имеют пластинчатую форму, при дополнительной обработке синтетическим шлаком — округлую, эллипсообразную. Испытания трубной стали с одинаковым содержанием серы показали, что вредное влияние водорода на сталь с эллипсообразными сульфидами на 10—40 % ниже, чем на сталь с пластинчатыми сульфидами. Значительно повышается стойкость стали к водородному охрупчиванию в растворах сероводорода при ее легировании редкоземельными элементами вследствие их влияния на облегчение молизацин водорода, что затрудняет абсорбцию водорода металлом. [c.23]

    Во втором случае имеется возможность одновременного определения углерода. Содержание серы можно вычислить по площадям пиков сероводорода или двуокиси при использовании соответствующих калибровочных кривых или калибровочных факторов. При применении обоих методов необходимо, однако, выделение продуктов гидрирования или окисления при помощи охлаждаемых ловушек. Определение сероводорода производят на колонках с молекулярными ситами, причем получают результаты, хорошо совпадающие с результатами метода ASTM . Возникающие при гидрировании низшие углеводороды должны быть выделены при помощи включенной перед хроматографической колонкой охлаждаемой колонки с молекулярными сптами. При окислении, кроме двуокиси серы, возникают вода и двуокись углерода. Воду удаляют обработкой сульфатом кальция, а для разделения двуокиси углерода, кислорода и двуокиси серы хорошо подходит колонка, содержащая динонилфталат на хромосорбе. Метод окисления позволяет определять серу в сульфоксидах, сульфонах, сульфидах и дисульфидах но сульфаты не переводятся количественно в двуокись серы. Азот и галогены не оказывают в.лияния на результаты определения. Продолжительность анализа составляет только 20 мин. [c.253]

    Имеющиеся в научно-технической литературе данные свидетельствуют о том, что некоторые исследователи [67, 84, 211] связывают зарождение КР с наличием в металле труб неметаллических сульфидных включений (для сталей - это в основном сульфиды марганца, хотя идентификация химического состава сульфидных включений методом Баумажане представляется возможной). При этом сульфидные включения (СВ) рассматриваются как потенциальные генераторы водорода даже в нейтральных и щелочных средах. Возможность генерации водорода, достаточного для поддержания КР, получила экспериментальное подтверждение только для случая взаимодействия сталей, аномально загрязненных сульфидными включениями, с кислотами [198]. Данные о возможности генерации водорода сульфидными включениями при их контакте с щелочнымй грунтовыми и приэлектродными электролитами (представляющими из себя в основном соли угольной кислоты) отсутствовали. В.свя- [c.33]

    Другим объяснением исследуемого разрушения является концепция водородного охрупчивания металла, предполагающая, что растрескивание возникает в результате наводороживания стали. При этом источником водорода может быть сероводород, содержащийся в транспортируемом продукте или продуцируемый суль-фатвосстаиавливающими бактериями в грунте [62, 224] углекислый газ, содержащийся в транспортируемом продукте токи катодной защиты при потенциалах выше регламентированных значений. Однако при КР, как отмечалось выше (см. раздел 1), отсутствуют характерные внешние проявления водородного растрескивания, такие как блистеринг и расслоение металла. Нанодороживание металла вследствие образования сероводорода при растворении неметаллических включений сульфида марганца в [c.89]

    В образцах всех илавок отмечены включения сернистого церия круглой формы. Они располагаются только в структурно-свободном эвтектическом цементите. По-видимому, сульфид церия растворим в эвтектическом расплаве, выделяется перед кристаллизацией цементита, и последний затвердевает вокруг сфероидов сульфида церия. [c.72]

    Поверхности могут появляться в результате растворения имеющихся в металле сульфидных и сульфидно-оксидных включений. Образующиеся в таком случае микроуглубления оказываются заполнены кислым раствором с высоким содержанием сульфида, и это не позволяет нержавеющей стали запассивироваться в углублении. В других случаях инициирование может быть связано с израсходованием кислорода в зазоре или под осадком. В результате возникает кислородный концентрационный элемент, анод которого расположен гоответственно в зазоре или под осадком, а катод снаружи. Гидролиз анодно растворяемых металлических ионов ведет к возникновению у анода высокой кислотности, препятствующей пассивации. [c.113]


Смотреть страницы где упоминается термин Сульфид, включение: [c.450]    [c.385]    [c.385]    [c.189]    [c.476]    [c.164]    [c.153]    [c.201]    [c.49]    [c.34]    [c.26]    [c.34]    [c.79]    [c.574]    [c.84]    [c.185]    [c.190]    [c.90]    [c.81]   
Биохимия Том 3 (1980) -- [ c.132 ]




ПОИСК





Смотрите так же термины и статьи:

включения



© 2024 chem21.info Реклама на сайте