Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двухфазные потоки режимы движения

    Успех применения гомогенной модели двухфазного потока для определения гидравлического сопротивления зависит от того, насколько реальная картина движения близка к идеализированной. Таким образом, уже при оценке возможности применения той или иной расчетной зависимости важно правильно определить режим течения двухфазного потока. Подробнее эти вопросы будут рассмотрены ниже. Однако сопоставление с экспериментами показывает, что принципиально невозможно с помощью одной только гомогенной модели двухфазного потока описать закономерности изменения гидравлического сопротивления в широком диапазоне изменения давления среды и массовой доли пара в потоке для различных жидкостей. [c.84]


    Как следует из рис. 88, только в режиме эмульгирования (режим IV) наблюдается одинаковый или во всяком случае близкий характер изменения различных количественных характеристик двухфазного потока, что находится в соответствии с ранее рассмотренными особенностями движения двухфазных систем. [c.168]

    Принято считать, что подобные пузырьковые режимы неустойчивы. Однако если слиянию пузырей препятствуют поверхностно-активные вещества, блокирующие поверхность раздела фаз, то подобный пузырьковый режим может существовать при высоких газо-содержаниях вплоть до образования пены. Устойчивый пузырьковый режим может существовать и для чистых жидкостей. Как известно, основной механизм образования газовых пузырей — дробление их турбулентными пульсациями. Следовательно, мощность, вводимая в единицу массы потока, должна превышать некоторое пороговое значение. При движении двухфазного потока в канале основную долю диссипируемой мощности составляет трение жидкости о его стенки. Таким образом, в рассматриваемом случае пузырьковую структуру течения газо-жидкостного потока в первую очередь будет определять кинетическая энергия жидкости. [c.208]

    На основании визуальных наблюдений и фотографирования структур двухфазного потока, а также на основании анализа кривых изменения локального коэффициента теплоотдачи по высоте щелевого канала при различных сочетаниях режимных параметров были выявлены следующие режимы течения однофазное течение жидкости, пузырьковый режим, режим, сходный с пробковым, и стержневой (рис. УП-2). Некоторые из этих режимов при детальном рассмотрении могут быть также разделены. В начале зоны пузырькового режима имеется участок, где на стенке действуют центры парообразования, т. е. существует поверхностное кипение. Далее следует участок, где они отсутствуют и наблюдается только движение мелких пузырьков пара в виде вертикальных колонн. [c.168]

    Характер движения двухфазного потока в трубе отличается сложностью и разнообразием и зависит от ориентации труб (горизонтальной или вертикальной). Различают пленочный режим, кольцевой, пробковый, эмульсионный, снарядный и т. д. [c.317]

    Режим течения двухфазного потока, как правило, определяется объемным паросодержанием и скоростью движения фаз. Переход их является нечетким и неизбежен в системах, где в качестве нагреваемого и испаряемого продукта используется углеводородное сырье. Известно, что по- [c.181]


    При выходе газа из прорезей со скоростью Шр с тангенциально направленными осями под углом а к горизонтали образуется вращающийся газовый поток на тарелке, который увлекает жидкость, поступающую в центральный приемный стакан. В результате организуется вращающийся двухфазный поток газ совершает вращательное винтообразное движение вверх под верхнюю тарелку, а жидкость — в горизонтальной плоскости радиально-кольцевое движение от центра к периферии, сливается в кольцевой карман и по сливным трубам в центр нижней тарелки. В зависимости от геометрических параметров тарелки, свойств фаз и соотношения их объемных скоростей наблюдается три гидродинамических режима работы тарелки барботажный режим, когда кинетической энергии газовых струй недостаточно для раскручивания жидкости переходный режим — начало раскручивания жидкости и струйный режим в условиях регулярного вращения газо-жидкостного слоя на тарелке. В поле центробежных сил происходит тесный контакт и четкое разделение фаз, повышаются допустимые скорости фаз по сравнению с барботажным режимом работы, в результате чего увеличивается производительность тарелки. [c.276]

    В 1939 г. Бэджер [7] еще раз детально рассмотрел вопрос о механизме движения двухфазного потока. К ранее упомянутым трем режимам течения он прибавил четвертый. Этот режим, названный эмульсионным, характеризуется наличием капелек жидкости, равномерно распределенных в паровой фазе, и отсутствием движущейся по стенке трубы пленки жидкости. Бэджер обработал имеющиеся литературные данные и установил, что для последних трех режимов течения коэффициент теплоотдачи тем выше, чем ниже значения температурного напора (прн условии, что все другие величины не изменяются), т. е. что с ростом Ы коэффициенты теплоотдачи уменьшаются ). При обработке данных принималось, что кипение начинается в точке, где температура жидкости достигает максимума. [c.63]

    Во-вторых, характер рассматриваемого процесса предопределяется наложением двух видов движения восходящего потока среды и осаждающих относительно него твердых частиц. Движение среды существенно влияет на характер перемещения и распределения частиц. В свою очередь, нахождение в потоке твердых частиц влияет на режим движения несущего потока. Это приводит к возникновению качественно нового явления — движения двухфазной среды, основные явления в которой уже не являются результатом простого векторного сложения двух составляющих перемещений. [c.48]

    Реактор прямоточного типа, секционированный клапанными тарелками, выполняют в виде цилиндрического вертикального корпуса, содержащего при необходимости трубчатый теплообменник, расположенный выше секционирующих тарелок. Штуцеры для подачи газа и жидкости в аппарат размещают, соответственно, под и над нижней тарелкой (рис. 43,а). Диаметр цилиндрической обечайки может быть меньше диаметра кожухотрубного теплообменника, что позволяет организовать в таком аппарате не только прямоточный режим движения контактирующих фаз, но и прямоточно-противоточный. Нижние концы труб теплообменника целесообразно снабжать коническими расширителями, благодаря чему обеспечиваются условия входа двухфазного потока в вертикальные трубки, улучшается распределение фаз, уменьшаются потери давления и стабилизируется работа аппарата в целом. [c.171]

    Поскольку число Прандтля характеризует относительное соотношение профилей скоростей и концентраций, то следует ожидать, что влияние этого соотношения на процесс массопередачи должно меняться в зависимости от гидродинамической обстановки процесса, т. е. должен меняться показатель степени при числе Прандтля. При наиболее равномерном распределении жидкости и газа в двухфазном потоке в условиях развитой свободной турбулентности в соответствии со структурой уравнений (VI.45) и (VI.46) показатель степени п должен достигать максимального значения, равного единице. При снижении турбулизации потоков показатель степени п при числе Прандтля должен уменьшаться, становясь в пределе, когда движение прекратится, равным нулю. В последнем случае понятие о соотношении профилей скоростей и концентраций теряет свой смысл. Практически в соответствии с обычными гидродинамическими режимами проведения диффузионных процессов показатель степени п при числе Прандтля должен меняться в пределах от 1/3 (ламинарный режим), если условно допустить применение этого термина к двухфазному потоку, до 1 (режим развитой свободной турбулентности). Таким образом, для различных гидродинамических режимов вид уравнений (VI.45) может быть уточнен. [c.197]

    Рассмотренные варианты двухфазных моделей реактора являются наиболее простыми. Предложена [138] более сложная модель для реакции первого порядка, учитывающая скорость движения пузырей. В модель с перемешиванием [3] также вводятся усложнения, когда рассматриваются три зоны слоя, и это приводит к более сложной системе уравнений. Однако, пока нельзя сказать, что какая-либо модель является универсальной. Если учитывать два предельных состояния структуры слоя (см. главу I), режим, с обособленными пузырями и агрегатный, то модель с потоком через пузырь по своей сути ближе к первому состоянию, а для второго гидродинамического режима более подходящей будет модель с перемешиванием, так как в ней не учитывается размер и скорость движения пустот. [c.122]


    В. В. Кафаров [51, 67, 205] выдвинул ряд положений, являющихся базой теории межфазного массопереноса, основанной на представлениях о межфазной турбулентности. На границе раздела фаз, течение которых не ограничивается твердыми стенками, возникает особый гидродинамический режим, характеризующийся образованием вихрей последние пронизывают пограничные слои и проникают вглубь фазовых потоков. Такой режим определяется как режим развитой свободной турбулентности. В этом режиме (режиме эмульгирования или турбулентной пены) двухфазная си-тема представляет собой недвижный комплекс газожидкостных вихрей со значительным развитием межфазной поверхности и быстрым ее обновлением. Газожидкостной системе присущи основные особенности свободной турбулентности — отсутствие гашения турбулентных пульсаций, наличие нормальных составляющих скорости, отсутствие заметного влияния молекулярных характеристик на массоперенос. Таким образом, межфазная поверхность сама становится источником турбулентности и масса переносится через поверхность раздела фаз вихрями с осями, перпендикулярными направлению движения потоков. Анализируя условия, в которых возникает межфазная турбулентность, В. В. Кафаров указывает [51], что вихри на межфазной поверхности возникают при различающихся по величине и направлению скоростях движения фазовых потоков, в частности в тарельчатых колоннах создается благоприятная обстановка для вихреобразования на границе раздела фаз. В наших экспериментах на тарельчатых контактных устройствах различного типа — это важное обстоятельство следует подчеркнуть еще раз — во всем исследованном диапазоне нагрузок по жидкости и газу наблюдался режим развитой свободной турбулентности (см. гл. ГУ, стр. 114). [c.155]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    При увеличении массовой доли пара в потоке, движущемся в обогреваемом канале, могут быть достигнуты условия, когда пузырьковое кипение будет оказывать все меньщее влияние на коэффициент теплоотдачи по сравнению с влиянием конвекции в двухфазном потоке. При этом меняется механизм парообразования в потоке, а следовательно, и механизм теплопередачи. Если на участке кипения пар образовывался в виде пузырьков, то на участке конвективной теплоотдачи двухфазного потока происходит преимущественное испарение жидкости с имеющейся в потоке границы раздела фаз. Визуальные и кинематографические исследования позволили установить наличие участка, на котором пузырьковое кипение подавляется и может быть подавлено полностью. Этот режим теплоотдачи иногда называют испарением при вынужденной конвекции [105]. Важно подчеркнуть, что теплоотдача на этом участке полностью определяется конвективными токами, формирующимися при движении двухфазного потока. [c.244]

    Режимы и структуры газожидкостных потоков определяются условиями образования газовых либо жидкостных частиц. Если условия предпочтительны для образования пузырьков, то в структуре двухфазного потока преобладает нузьфьковый режим движения. Если условия предпочтительны для образования капель, то формируется капельно-пленочный режим. На рис. 3.4.1.1 приведены типичные структуры вертикальных восходящих потоков [48]. [c.208]

    Режимы движения газо-жидкостного потока. При малых приведенных скоростях газа (Vr < 0,1 м/с) в потоке жидкости распределены отдельные пузыри различных размеров, не зависящих от условий входа газа в трубу. Такой режим движения газо-жидкостной смеси в барботажных трубах газлифтного аппарата можно назвать пузырьковым. При увеличении скорости газа, а соответственно и скорости циркулирующей жидкости, газо-жидкостная смесь приобретает структуру динамической пены, состоящей из деформированньпс пузырей различных размеров, заполняющих весь объем трубы. Этот режим называют пенным. С дальнейшим увеличением скорости газа пенный режим переходит в стержневой, когда основная масса газа движется в центре трубы, окруженная кольцевым восходящим потоком жидкости. Стержневой режим наступает при скоростях газа более 10 м/с, при которых газлифтные аппараты обычно не работают. Переход от одного режима движения к другому происходит плавно, без проявления каких-либо кризисных явлений в гидродинамических характеристиках газо-жидкостной смеси. Подробнее о структурах двухфазного течения см. в 3.4.1. [c.520]

    Изучение режимов течений двухфазных потоков в трубах показало, что при отношениях массового расхода пара к общему расходу смеси Х > 0,1 0,15 в широком диапазоне изменения давлений и удельных массовых расходов смеси имеет место дисперсно-кольцевой режим течения (рис. 1), характеризующийся совместным движением пристенной жидкой пленки 2 и ядра потока, представляющего смесь газа (пара) 1 и жидких капель 3. При достаточно больших расходах смеси, близких к критическим, такой режим может иметь место даже при более низких паросо-держаниях х > 0,02 0,03. [c.58]

    Часто движение двухфазных систем типа жидкость—газ осуществляется в трубах. При этом пленка жидкости располагается на поверхности трубы в виде тонкого кольца, а газовый поток движется в центральной части. Такой режим движения называют кольцевым. Для него характерно раздельное движение жидкости и газа. С увеличением скорости последнего устойчивость пленочного течения нарушается. С гребней волн срываются брызги, и кольцевой режим течения переходит в дисперсно-кольцевсж. При этом в центральной части трубы движется не газ, а дисперсия частиц жидкости в газе. Верхняя граница устойчивости пленоч- [c.71]

    При пневмотранспорте сплошным потоком сыпучий материал находится в состоянии, близком к псевдоожи-жеиию. При этом, как и всегда при двухфазном псевдоожижении (система газ — твердое тело), в слое образуются газовые пузыри. Благодаря высоким концентрациям твердой фазы диаметры подъемников при пневмотранспорте сплошным потоком небольшие. Это способствует тому, что газовые пузыри заполняют все сечение трубы, и в подъемном стояке создается поршневой режим движения периодически поток твердой фазы разрывается и в этих промежутках образуются газовые пробки. [c.130]

    Поскольку подача этиленгликоля создает двухфазный поток, был проведен расчетный анализ структуры его движения в разных частях теплообменников (по режи.мным картам Бекера). Скорость срыва пленки рассчитывалась для вертикальных труб по уравнению Мажарова, а для горизонтальных труб по формуле Рамзина. Гидродинамическая характеристика аппаратов приведена в табл. 7.4. [c.96]

    Для правильной оценки коэффициентов массопередачи необходимо иметь наиболее полные сведения о гидродинамике двухфазного потока с волнообразной границей раздела, причем получение экспериментальных данных становится первоочередной задачей. Попытки определить параметры волн затруднены тем, что эти параметры нестабильны обычно их можно оценить лишь в среднем и весьма приблизительно. Однако нам удалось обнаружить в условиях восходящего прямотока довольно правильную картину чередования гребней и впадин на межфазовой поверхности, при стабильных значениях длины волны, ее периода и амплитуды. Такой режим был получен на модели пленочного абсорбера, представляющей собой вертикально расположенную стеклянную трубку, по которой снизу вверх подается газ, увлекающий при своем движении пленку жидкости, перемещающуюся по внутренней поверхности трубки. Подача орошающе жидкости осуществляется через специальную кольцевую щель, предусмотренную для этой цели. [c.60]

    Однонаправленное движение двухфазных потоков. В ряде мокрых пылеулавливающих аппаратов наблюдается однонаправленное движение двухфазного потока, характер которого (режим движения) определяется отношением [138]. [c.379]

    В опускных пузырьковых двухфазных потоках скорость всплытия пузырей направлена навстречу скорости жидкости. Если групповая скорость всплытия пузырей меньше скорости жидкости, реализуется спутное опускное течение при их равенстве реализуется режим зависания газовой фазы. В последнем случае объемное расходное газосодержание р равно нулю, а истинное объемное газосодержание Ф может меняться в широких пределах (в наших экспериментах при атмосферном давлении получено 0<ф< 0,6). По характеру взаимного движения жидкости и газа режик< зависания газовой фазы противоположен барботажу, подробно описанному в литературе, например в [ 1 ]. В общем случае режим зависания не является режимом захлебывания при переходе от спутного движения к противоточному и должен, подобно барботажу, рассматриваться как самостоятельнь й. Он может быть организован цепенаправпенно без предварительного прямоточного или противоточного движения. Например, режим зависания реализуется в верхней части столба жидкости в вертикальном канале при питании его стекающей по стенкам пленкой или центральной струей. Высота двухфазного слоя в подобных условиях в наших экспериментах, например, достигала 15 м и более при полном отсутствии расхода газа. [c.101]

    Для двухфазных газо-жидкостных и жидкость-жидкостных систем величина для дисперсной фазы определяется не объемной скоростью потока, а зависит от гидродинамических режимов потоков. Области существования последних определяются отношением объемных скоростей дисперсной и сплошной фаз. Для реакций под повышенным давлением, которое обычно применяется в случаях газо-жидкостных каталитических реакций, наиболее часто встречается режим пузырькового течения. В этом случае скорость всплывания пузырей определяется разностью плотностей сплошцой и дисперсной фаз, диаметром пузыря, зависящим от типа и размера распределительного устройства и от величины поверхностного натяжения на границе раздела фаз. В качестве примера формулы, видимо, приемлемой для расчета колонных аппаратов с суспендированным катализатором, можно привести приближенную формулу для скорости всплывания пузырьков в объеме жидкости при ламинарном движении [26] [c.303]

    В процессах химической технологии чаще всего приходится иметь дело с противоточным движением фаз в слоях насадок — жидкость стекает по поверхности насадки под действием силы тяжести, а навстречу ей движется легкая жидкость, газ или пар. При относительно небольших расходах материальных потоков на характер течения стекаюп1ей жидкости встречный поток оказывает небольшое влияние. С повышением расходов материальных потоков пленка жидкости на поверхности насадки утолщается и местами турбулизируется. При последующем увеличении расходов турбулентность все более развивается и в слое насадки образуется двухфазная система, напоминающая эмульсию. Такой режим устойчив в узком диапазоне скоростей фаз. С дальнейшим ростом скорости над слоем насадки скапливается слой жидкости — происходит инверсия, обращение движения фаз и захлебывание насадки. [c.274]

    По мере увеличения скорости вертикального потока газа и в отсутствие разделяющей перегородки в аппарате фонтанирующего слоя возникает несколько иной режим циркуляции дисперсного материала и движения газа. Наблюдения за течением газа с помощью нитковых индикаторов и измерения скорости газа шаровыми зондами показали, что имеются две зоны, существенно отличающиеся по характеру течения сплошной фазы. Над входным щелевым отверстием аппарата образуется изобарическая турбулентная струя, а около наклонной стенки — малоскоростной обратный поток газа в направлении основания восходящей струи. В таком аэрофонтанном режиме частицы дисперсного материала следуют за газовым потоком, при этом в аппарате фонтанирующего слоя образуются характерные зоны вертикальная двухфазная струя (зоны I и 2 на рис. 5.24), зона опускающегося материала (зона 3), свободное от частиц пространство (зона 5) и зона поперечного движения материала 4). [c.346]

    Известен режим вертикального пневмотранспорта пылевидного материала (катализатор) при низких скоростях. При этом режиме скорость газа превышает таковую при псевдоожижении, но она ниже той, которая создает развитой режим двухфазного восходящего потока. Этот поток получил название полусквозного [33]. При таком потоке существует общее восходящее движение твердой фазы, но наблюдается интенсивное продольное перемешивание, хотя и менее значительное, чем в псевдоожиженном слое. [c.140]

Рис. 1.41. Границы существования режимов движения двухфазной системы в нисходящем потоке для системы воздух —вода /—устойчивый пузъфьковый режим 2—снарядный режим 3 — переход от снарядного режима к стержневому 4 —стержневой режим (с мелки- ии пузырьками в токе жидкости) Рис. 1.41. <a href="/info/946467">Границы существования</a> режимов <a href="/info/942786">движения двухфазной системы</a> в <a href="/info/471198">нисходящем потоке</a> для <a href="/info/377648">системы воздух</a> —вода /—устойчивый пузъфьковый режим 2—<a href="/info/1283738">снарядный режим</a> 3 — переход от снарядного режима к стержневому 4 —стержневой режим (с мелки- ии пузырьками в токе жидкости)

Смотреть страницы где упоминается термин Двухфазные потоки режимы движения: [c.93]    [c.105]    [c.102]    [c.156]   
Процессы и аппараты химической промышленности (1989) -- [ c.70 ]




ПОИСК







© 2025 chem21.info Реклама на сайте