Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лантан кислорода

    Активация цеолитов описанными способами вызывает миграцию катионов редкоземельных элементов из больших полостей к местам, расположенным внутри содалитовых ячеек каркаса. Чем жестче активация цеолитов, тем интенсивнее миграция катионов. Эти результаты не согласуются с четырехкоординационной структурой, предложенной ранее для катионного комплекса с одной мостиковой связью лантан—кислород—лантан [Ьа—ОН—Ьа] " (схема 5, в). Поэтому было высказано предположение, что ионы образуют комплекс с 4 мостиковыми гидроксильными группами  [c.484]


    Система уран — лантан — кислород [c.180]

    М-р Джон Ньюлендс зачитал статью, озаглавленную Закон октав и причины численных соотношений между атомными весами . Автор заявил об открытии им закона, согласно которому элементы, аналогичные по своим свойствам, связаны особыми соотношениями, подобными существующим в музыке между произвольной нотой и ее октавой. Исходя из атомных весов элементов в шкале Канниццаро, автор располагает известные элементы в определенной последовательности, начиная с элемента с минимальным атомным весом (водород) и кончая торием (атомный вес 231,5) однако он помещает никель и кобальт, платину и иридий, церий и лантан и т. д. как абсолютно сходные элементы в одной и той же строке. Расположенные таким образом пятьдесят шесть элементов охватывают восемь октав, и автор отмечает, что в результате хлор, бром, иод и фтор оказываются на одной строке, т. е. занимают аналогичные места в его таблице. Азот и фосфор, кислород и сера и т.д. также рассматриваются как элементы, образующие подлинные октавы. Предположения автора иллюстрируются таблицей, представленной на заседании общества и воспроизводимой ниже  [c.326]

    Кислород Кобальт Кремний Криптон Ксенон. Кюрий. Лантан. Литий. Лютеций Магний. Марганец Медь. . . Менделевий Молибден Мышьяк Натрий. Неодим Неон. . Нептуний Никель. Ниобий Нобелий Олово. Осмий. Палладий Платина Плутоний Полоний. Празеодим Прометий Протактиний Радий Радон Рений [c.19]

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Редкоземельные элементы. Введение в железо при 1550° С 0,76 мас.% V уменьшает а железа с 1800 до 1240 эpг/ J г [103]. Согласно [100], лантан (до 0,1 мае. %) и церий (до 0,092 мас.%) не оказывают влияния на а железа. По данным [6, 17], лантан и церий понижают о железа. В работе [57] присадки Се и Ьа производили в карбонильное железо, содержащее после расплавления 0,08% кислорода. С увеличением количества вводимого церия или лантана ст железа возрастает от 1240 до 1850—1900 эрг/сж . Добавки лантана к железу способствуют более интенсивному возрастанию сг, чем присадки церия. При введении церия в количестве 0,8 мас.% и лантана 0,5 мае. % а достигает максимальных значений. При дальнейшем увеличении количества присаживаемых РЗЭ до 1—1,2% а расплавов снижается. Повышение а происходит одновременно с понижением содержания кислорода в металле вследствие раскисления его РЗЭ. В [10] приведены рассчитанные изотермы а железа со скандием, иттрием, лантаном и неодимом. [c.30]


    Низкотемпературная дегидратация (<< 400 °С) приводит к частичному гидролизу гидратированного иона трехвалентного лантана с образованием катиона, в котором лантан связан с одной гидроксильной группой (рис. 6.13). Рентгеноструктурные исследования показывают, что эти ионы локализованы в местах SJ в количестве 16 ионов па элементарную ячейку или 2 иона на каждую содалитовую ячейку. Кроме того, с кислородом каркаса [на рисунке 0(1)] связывается протон, давая гидроксильную группу. Ей отвечает высокочастотная полоса поглош ения при 3640 см в области валентных колебаний ОН-групп. Интенсивность полосы - поглощения при 3524 см и отношение интенсивностей полос поглощения при 3524 и 3640 см растут с увеличением степени обмена на лантан. [c.481]

    Азот . Актиний. Алюминий Америций Аргон. . Астат. . Барий . Бериллий Берклий Бор. . . Бром. Ванадий. Висмут Водород. Вольфрам Гадолиний Галлий Гафний Гелий. Германий Гольмий. Диспрозий Европий Железо Золото Индий Йод. Иридий. Иттербий Иттрий Кадмий. . Калий. Калифорний Кальций. Кислород Кобальт Кремний. Криптон. Ксенон Кюрий Лантан Литий. . Лютеций Магний Марганец Медь. Менделевий Молибден Мышьяк. Натрий Неодим [c.437]

    При температуре 450° в атмосфере кислорода лантан воспламеняется и превращается в окись. [c.755]

    Неодим подвержен окислению на воздухе значительно меньше, чем лантан и церий. Он покрывается на воздухе серой пленкой окиси, защищающей его от дальнейшего окисления. Окисел неодима лучше проводит ток в атмосфере воздуха или кислорода, чем в нейтральной атмосфере (азота), и электропроводность его повышается с повышением упругости пара окислителя. [c.799]

    Что еще можно сказать о химических свойствах лантана В кислороде при нагревании до 450° С он сгорает ярким пламенем (нри этом выделяется довольно много тепла). Если же прокаливать его в атмосфере азота, образуется черный нитрид. В хлоре лантан загорается при комнатной температуре, а с бромом и йодом реагирует лишь нри нагревании. Хорошо растворяется в минеральных кислотах, с растворами щелочей не реагирует. Во всех соединениях лантан проявляет валентность 3-)-. Словом, металл как металл — и по физическим свойствам, и по химическим. Ш  [c.63]

    Иридий. Иттербий Иттрий. Кадмий. Калий. Калифорний. Кальций Кислород Кобальт Кремний Криптон Ксенон. Кюрий. Лантан. Литий. Лютеций Магний. Марганец Медь. . Молибден Мышьяк Натрий. Неодим. Неон. .  [c.363]

    Азот. . . Алюминий Аргон, Барий. Бериллий Бор. . Бром. . Ванадий Висмут. Водород Вольфрам Галий. Гафний. Гелий. Германий Железо Золото. Индий. Иод. . Иридий Иттрий. Кадмий. Калий. Кальций Кислород Кобальт Кремний Криптон Ксенон. Лантан. Литий. Магний Марганец Медь. . Молибден Мышьяк Натрий [c.324]

    Свойства простого вещества и соединений. Цезий при обычных комнатных условиях — полужидкий металл ( пл = 28,5°С, кип= = 688 С). Его блестящая поверхность отливает бледно-золотистым цветом. Цезий — металл легкий с пл. 1,9 г/см , например лантан примерно с той же атомной массой весит в 6 с лишним раз больше. Причина того, что цезий во много раз легче соседей по периодической системе — в большом размере атомов. Атомный и ионный радиусы металла очень велики i aт = 2,62 А, i иoн=l,65 А. Цезий — необычайно химически активен. Он настолько жадно реагирует с кислородом, что способен очистить газовую смесь от малейших следов кислорода даже в условиях глубокого вакуума. С водой реагирует при замораживании до —116° С. Большинство реакций с другими веществами происходит со взрывами с галогенами, серой, фосфором, графитом, кремнием (в последних трех случаях требуется небольшое нагревание). Сложные вещества также реагируют с ним бурно СОг, четыреххлористый углерод, кремнезем (при 300° С). В атмосфере водорода образуется гидрид СзН, воспламеняющийся в недостаточно осушенном воздухе. Из всех неорганических п органических кислот он вытесняет водород, образуя соли. Более спокойно протекают реакции цезия с азотом в поле тихого электрического заряда, а с углем при нагревании. С водородом реагирует при 300—350°С или иод давлением в 5—10-10 Па. Поэтому его спокойно можно хранить в сосуде, заполненном водородом. При нагревании (600° С) с кремнием в атмосфере аргона образуется силицид, а из диоксида цезий, как и рубидий, может вытеснять кремний [c.289]

    Азот. . . Актиний. Алюминий Америций Аргон. . Астат, . . Барий. . Бериллий. Беркелий. Бор. . . Бром. . . Ванадий. Висмут. . Водород. Вольфрам. Гадолиний Галлий. . Гафний. . Гелий. . Германий. Гольмий. Диспрозий Европий. Железо. . Золото. . Индий. , Иод. . . Иридий.. Иттербий. Иттрий. . Кадмий. . Калий. . Калифорний Кальций. Кислород. Кобальт. Кремний. Криптон. Ксенон. . Кюрий. . Лантан. . Литий. . Лоуренсий Лютеций, Магний. . Марганец. Медь. . . Менделеевий Молибден. Мышьяк. Натрий. . Неодим. .  [c.631]

    АКТИНИЙ (греч. aktinos — луч) Ас — радиоактивный элемент И1 группы 7-го периода периодической системы элементов Д. И. Менделеева. П. н. 89, массовое число наиболее долгоживущего изотона 227 (период полураспада 22 года). А. открыт в 1899 г, А. Дебьерном в отходах переработки урановых руд, где находят следы А. Искусственно А. получают при облучении радия нейтронами. А.— металл серебристо-белого цвета, химически очень активен, в соединениях трехвалентен, реагирует с кислородом воздуха, легко растворяется в НС1 и HNO3. По химическим свойствам близок к лантану. А.— опасный радиоактивный яд с высокой а-актнв-ностью. [c.14]


    По химической активности скандий, иттрий, лантан и актиний уступают лишь щелочным и щелочноземельным металлам. В ряду 5с — V — Ьа — Ас химическая активность заметно возрастает. С кислородом и хлором скандий и его аналоги энергично взаимодействуют на холоду, с другими неметаллами — при более или менее повышенных температурах. С малоактивными неметаллами скандий и его аналоги образуют тугоплавкие соединения типа интерметаллических, например 5сВг, УВа, ЬаВд, 5сС, ЬаСг и др. [c.282]

    Отношение к кислороду. При обычных условиях скандий, иттрий и лантан окисляются с поверхности кислородом с образованием защитной пленки. В нагретом состоянии эти металлы сгорают в кислороде, образуя оксиды состава МегОз. Наиболее энергично окисляется лантан, что следует из сопоставления теплот образования оксидов ЗсгОз, УгОз и ЬзгОз, которые соответственно равны 284, 295, ЗП кдж1г-экв. [c.64]

    Внутренняя периодичность находит естественное объяснение, если учесть, что энергетически вырожденные р-, d- и /-орбитали заполняются в соответствии с правилом Гунда . Причем повышенной стабильностью обладают вакантные, полностью завершенные (р , /1 ), а также наполовину заполненные (р , d , р) вырожденные орбитали . В соответствии с этим, например, валентная электронная конфигурация кислорода (2s 2p ) оказывается несколько менее стабильной, чем у азота (2s 2p ). У d-элементов при переходе, например, от Мп (4s 3d ) к Fe(4s 3d ) наблюдается та же закономерность. Для 4/-элементов следует иметь в виду конкуренцию между 4/- и 5й-оболочками. У европия (6s4f ) БсС-оболочка вакантна, а 4/-оболочка заполнена наполовину. Поэтому 3-й ионизационный потен[1,иал характеризует энергию отрыва одного из электронов с 4/-уровня, обладающего стабильной 4/ -конфигурацией, а потому относительно высок. У следующего элемента — гадолиния (6s4p5d ) при сохранении стабильной 4/ -конфигурации очередной электрон попадает на 5й-оболочку и 3-й ионизационный потенциал отвечает отрыву именно этого электрона, который, естественно, значительно слабее связан с ядром. Аналогичная ситуация наблюдается при переходе от иттербия (6s4/ ) к лютецию (6s4/ 5d ). С этой точки зрения лютеций целесообразно рассматривать не как последний элемент в семействе лантаноидов, а как первый элемент в ряду 5 -металлов, а лантан, который хорошо вписывается в общую закономерность изменения ионизационного потенциала, должен возглавлять семейство лантаноидов. [c.20]

    Когда энергия связи падает с ростом порядкового номера элемента в подгруппе, то температура плавления фаз, имеющих однотипную структуру, уменьшается. И, наоборот, если энергия связи возрастает, температура плавления однотипных фаз увеличивается. С этих позиций, например, в подгруппе кислорода температуру плавления полония и теллура сопоставлять не имеет смысла, так как их структура резко различается. Мы смогли обнаружить, в сущности, лишь два отклонения от указанной связи между Т л и АЯма- Температура плавления бария на 60 К ниже температуры плавления стронция, а стандартная энтальпия бария АЯзэв на 10,1 кДж больше, чем стронция. Но у стронция в отличие от бария при 862 К происходит аллотропное превращение с уменьшением объема на 2,3%. о означает, что вблизи температуры плавления энтальпия образования твердой фазы и энергия связи стронция могут быть выше, чем у бария. То же самое наблюдается для лантана и актиния. Лантан плавится при более высокой температуре, чем актиний, хотя стандартная энтальпия лантана на 26,7 кДж/моль ниже, чем у актиния. У лантана подобно стронцию при 595 С происходит аллотропное превращение с уменьшением объема на 0,5%. Таким образом, отклонение бария и лантана от упомянутой закономерности, по-видимому, кажущееся. [c.281]

    Азот. . Алюминий Ар гои. . Барий. . Бериллий Бор. . Бром. . Ванадий. Висмут. Водород. Вольфрам Гадолиний Галлий. Гафни11. Гелий. . Германий Гольмий Диспрозий Евроний Железо Золото Индий Иод. . Иридий Иттербий Иттрий Кадми11 Калий. Кальций Кислород Кобальт. Кремний Криптон Ксенон. Лантан. Литий Лютеций Магний. Марганец Медь. . Молибден Мышьяк 11атрий.  [c.14]

    Термин лантаниды ввели для того, чтобы показать, что следующие четырнадцать элементов идут за лантаном. Но тогда с равным успехом фтор можно назвать кислородидом (или оксидом) — он же следует за кислородом, а хлор — сульфидом... Но в понятия сульфид , фосфид , гидрид , хлорид и так далее химия издавна вложила другой смысл. Поэтому термин лантаниды большинство ученых считают неудачным и пользуются им все реже. [c.123]

    До середины XVIII в. было известно около 30 химических элементов затем открыли металлические кобайьт (1735) и никель (1751), напоминающие по свойствам же лезо. С 1766 г. по 1774 г. были открыты водород, кислород, азот и хлор. В конце XVIII в. были обнаружены близкие по свойствам металлы молибден и вольфрам (1781) и хром (1797). В начале XIX в. выделили при электролизе щелочные металлы, затем были открыты многие редкоземельные элементы, среди них иттрий, церий, лантан, тербий, эрбий и.др. К 60-м годам прошлого века стало известно уже 63 химических элемента. В этот. же период времени была завершена реформа атомно-молеку-лярного учения, выработаны методы определения атомных масс, которые были рассчитаны для всех известных тогда элементов (хотя и не всегда правильно). [c.155]

    Спеддинг и Даан [851] получили металлические лантан, церий, празеодим, неодим и гадолиний, восстанавливая их хлориды металлическим кальцием в атмосфере арго а, в танталовом тигле при температуре 1000° С при восстановлении гадолиния температуру повышали до 1350° С. Материал тигля имеет большое значение для получения чистых металлов, так как вследствие легкой окисляемости редкоземельные металлы могут поглощать кислород из материала тигля или образовывать с ним сплавы, что и наблюдается, например, при работе с тиглями из окиси бериллия или окиси циркония. Тантал оказался наиболее подходящим материалом, так как он не взаимодействует с расплавом и легко отделяется от образовавшегося слитка. Чистота металлов, получаемых этим способом, превышает 99%. По такому же принципу были получены металлы иттриевой группы, но вместо хлоридов были использованы фториды. [c.330]

    Оценивая основность этих элементов методом определения степени гидролиза растворов сульфатов по скорости инверсии сахарозы и разложения метилацетатов, Браунер пришел к такому же распределению редкоземельных элементов, причем лантан оказывался наиболее положительным в 8-м ряду, гадолиний же — в 9-м ряду. Следовательно,— заключает Браунер,—редкие земли и содержаш,иеся в них трехвалентные элементы в том, что касается их основности и положительного характера, не составляют непрерывного ряда, а образуют два параллельных ряда. Церий как переносчик кислорода показывает несколько аномальное поведение . Таким образом, эти два ряда соответствуют браунеровскому распределению редких земель в 8-м и 9-м рядах периодической системы. [c.74]

    Начнем с первой. Успешное применение редкоземельных элементов в металлургии обусловлено самими их свойствами. В самом деле, например, лантан и церий имеют небольшое давление паров и высокие телшературы кипения. Сочетание этих факторов позволяет вводить лантаноиды в различные тугоплавкие металлы, причем со значительно большей легкостью, чем щелочно-земельные металлы, в частности магний и кальций. С другой стороны, редкоземельные элементы обладают достаточно высокой активностью, поэтому оказываются хорошими раскисли-телями и десульфаторами, а также великолепными дегазаторами. Дело в том, что качество сталей и чугунов сильно зависит от содержания в них различных элементов — кислорода, серы, азота, фосфора. Они оказывают отрицательное влияние на свойства черных металлов, вызывая у них повышенную ломкость и хрупкость, понижая жаропрочность и износоустойчивость. От этих вредных примесей пытаются избавиться, и тут-то обнаруживается роль раскислителей, дегазаторов и десульфаторов. Редкоземельные элементы в этом отношении ведут себя великолепно например, их десульфирующая способность почти такая же, как у активнейших щелочных металлов и гораздо выше, чем у всех прочих элементов. [c.209]

    В ряду Зс—У—Ьа—Ас химическая активность заметно возрастает. При нагревании эти элементы взаимодействуют с большинством неметаллов, а при сплавлении— с металлами. Лантан, нагретый до 450 °С в атмосфере кислорода, воспламеняется и сгорает до оксида лантана ЬагОз. При высокой температуре он взаимодействует с азотом, образуя нитрид черного цвета по реакции 2Ьа - - N2 = 2ЬаК. [c.344]


Смотреть страницы где упоминается термин Лантан кислорода: [c.9]    [c.203]    [c.141]    [c.440]    [c.173]    [c.254]    [c.329]    [c.254]    [c.518]    [c.580]    [c.6]    [c.264]    [c.53]    [c.477]   
Физические методы анализа следов элементов (1967) -- [ c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Лантан



© 2025 chem21.info Реклама на сайте