Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий радиоактивный

    ПЛАСТИНЫ, ИЗГОТОВЛЕННЫЕ ПУТЕМ НАПОЛНЕНИЯ ОКСИДНОЙ ПЛЕНКИ АЛЮМИНИЯ РАДИОАКТИВНЫМИ ВЕЩЕСТВАМИ [c.198]

    Применение в качестве индикатора радиоактивного водорода. Была сделана попытка определить стадии, через которые протекает изомеризация -бутана в изобутан при помощи радиоактивного изотопа водорода, трития [65]. Катализатор представлял собой хлористый алюминий, нанесенный на древесный уголь или на окись алюминия. Он применялся в присутствии или в отсутствии хлористого водорода. Обмен атомами водорода между бутаном и молекулярным водородом мало дает для объяснения механизма изомеризации, за исключением случаев, когда молекула бутана атакуется водородом. Степень обмена с хлористым водородом указывает на более эффективное участие его в реакции. Поскольку с тщательно очищенными реагентами опыты не проводились, любые заключения о механизме реакции, основанные на обмене трития и водорода, остаются открытыми для критики. [c.21]


    Метилциклогексан при нагревании с бромистым или хлористым алюминием практически не изменяется [18]. При помощи метода меченых атомов с применением метилциклогексана, содержащего С1 -метильную группу, удалось показать, что изомеризация идет и что после реакции. 31% метилциклогексана содержал радиоактивный углерод в кольце [58]. Реакция проводилась при 25° в течение 21 часа, в качестве катализатора были взяты бромистый алюминий и бромистый водород, а в качестве инициатора цепи — вто/ -бутилбромид. В отсутствии инициатора в кольце оказалось только около 1% радиоактивного углерода. [c.46]

    Применение радиоактивного трития позволило разобраться в реакции изомеризации бутана в изобутан в присутствии комплекса треххлористого алюминия и хлористого водорода. Было высказано предположение, что процесс протекает следующим образом  [c.371]

    Начиная с 1930 кща разработка и усовершенствование ускорителей частиц привела к том>, что стало возможным получить достаточно высокие энергии, необходимые для проведения реакции слияния ядер. Первый искусственный радиоактивный изотоп в 1934 году получили Фредерик и Ирен Жолио-Кюри. Они бомбардировали алюминий альфа-частицами, получаемыми при распаде фосфора-ЗО  [c.333]

    М. С. Цвет впервые применил открытый им адсорбционный метод для разделения различно окрашенных растительных пигментов. При этом использовался столбик окиси алюминия, в котором компоненты сложного пигмента распределялись друг за другом, подобно различным лучам в спектре. Такой столбик адсорбента Цвет назвал хроматограммой. Это название применяется и в настоящее время, даже если адсорбированные вещества бесцветны. В последнем случае границы между зонами определяют другими методами. Для этого иногда применяют проявление подходящим химическим реактивом. Так, например, при анализе неорганических соединений часто проявляют растворами сернистого натрия, железистосинеродистого калия и т. д. Используют также другие методы, как например метод радиоактивных изотопов. [c.68]

    Продукты радиоактивного распада поглощаются алюминием, цинком и медью. Поэтому в некоторых странах применяют процесс фильтрования воды через слой металлической стружки толщиной [c.211]

    Неорганические иониты. Природными катионитами являются силикаты (например, цеолиты), в решетке которых часть атомов кремния 3102-решетки заменена атомами алюминия. Каждый встроенный атом алюминия обусловливает возникновение отрицательного заряда, который компенсируется катионами. Представителями этой группы являются также глауконит, бентонит и глинистые минералы. В качестве анионитов применяют апатит. Силикаты, обладающие ионообменными свойствами, получают также синтетическим путем (плавленый пермутит, осажденный пермутит). Для специальных разделений, например для разделения щелочных и щелочноземельных металлов, а также для разделения радиоактивных веществ применяют, например, гидратированные окислы циркония и олова [39], аммонийные соли гетерополикислот [40, 41] и гексацианоферраты [42]. С недостатками неорганических ионитов приходится мириться, используя такие их достоинства, как низкая чувствительность к действию температуры, твердость и однородность структуры и нечувствительность к действию радиоактивного излучения. [c.371]


    Исторически одна из первых ядерных реакций была выполнена с использованием алюминия в качестве мишени при облучении ядер атомов указанного элемента а-частицами полония по реакции кХ - (а, п) Р был получен один из первых радиоактивных изотопов — радиофосфор. [c.425]

    Все изотопы алюминия, кроме зА1, радиоактивны. [c.51]

    Таким образом, алюминий, его ядерные свойства сыграли важную роль в развитии ядерной химии и создании учения об искусственной радиоактивности. [c.51]

    Поднося к включенному счетчику препарат стронция-90, мы замечаем, что счетчик улавливает 3-лучи уже на большом расстоянии. Когда препарат поднесен к о кошку счетчика вплотную, треск счетчика становится сплошным, нельзя уловить отдельных разрядов, говорят, что счетчик захлебывается . Поставим перед счетчиком лист бумаги — он практически не изменяет интенсивность излучения. Теперь закроем счетчик, к которому поднесен источник р-лучей, листками алюминиевой фольги. Чем толще слой алюминия, тем меньше мы слышим щелчков, тем меньше р-частиц попадает в счетчик, так как радиоактивное излучение поглощается алюминием. Вот щелчки почти исчезли. Теперь снимем часть толстых алюминиевых пластинок, снова слышны щелчки, снова р-частицы попадают в счетчик. [c.217]

    Первая искусственно осуществленная ядерная реакция была реализована супругами Ирен и Фредериком Жолио-Кюри 1з А1(а, я)15 Р, она привела к открытию искусственной радиоактивности. Эта реакция происходила при облучении образца металлического алюминия а-частицами (тип ядерной реакции а, л). В результате образовался искусственный радиоактивный изотоп фосфора и происходило выбрасывание нейтронов. Другая ядерная реакция того же типа 5 °В(а, га)7 Ы, осуществленная ими же, — это облучение бора а-частицами, при котором образовался радиоактивный изотоп азота и тоже выделялись нейтроны (тип а, п). [c.219]

    Искусственное получение радиоактивных ядер. Ирен Кюри и Фредерик Жолио-Кюри в 1934 г. установили, что ядра алюминия после бомбардировки их а-частицами становятся радиоактивными, излучая частицы с массой, равной массе электрона, но несущие элементарный положительный заряд. Их обозначают и называют положительными электронами, антиэлектронами или позитронами. Вещества, излучающие их, называются р+-излуча-телями. [c.64]

    Для доказательства того, что при бомбардировке ядер а-частицами получаются новые радиоактивные ядра, И. Кюри и Жолио впервые применили химический метод. Они поступали так. Листок металлического алюминия после облучения а-частицами растворяли в соляной кислоте [c.64]

    Это уравнение показывает, что при взаимодействии атома алюминия с а-частицей образуются атом кремния и протон. Радиоактивный распад радия с образованием радона и гелия следует записать так  [c.22]

    Искусственная радиоактивность. В 1934 г. Ирен и Фредерик Жолио-Кюри обнаружили возникновение радиоактивных изотопов фосфора зР и азота 7 N в результате бомбардировки а-частица-ми ядер алюминия и бора  [c.400]

    Доказательством того, что промежуточными продуктами в реакциях Фридля-Крафтса являются сложные эфиры HAI I4, может служить ниже приведенная схема перехода меченых атомов хлора, имеюш ая место в реакциях между третичным хлористым бутилом и бензолом в присутствии хлористого алюминия с мечеными атомами хлора при этом выделяется радиоактивный хлористый водород [13]. [c.216]

    Вы, возможно, считаете, что атомы вообще не меняются атом алюминия всегда остается алюминием, а железа - железом. В основном это так. Однако некоторые атомы, имеющие неустойчивые ядра, все-таки иногда изменяются при этом они превращаются в атомы других элементов (имеющих другие ядра) обычно с испусканием дополнительных частиц и энергии, что и является собственно радиоактивностью, а сам процесс называется радиоактивным распадом. Испускаемые частицы и энергия называются ядерной радиацией или ядерным излучением. Многие преимущества и недостатки ядерных технолопш связаны именно с этими излучениями. [c.303]

    Различия в составе изомеров в опытах с серной кислотой и хлоридом алюминия, по-видимому, объясняются конкуренцией между скоростями внутримолекулярных гидридных переносов и реакции алкилирования. Образующиеся в присутствии серной кислоты вторичные метилциклогексилкарбониевые ионы с большей скоростью превращаются в наиболее устойчивые третичные карбокатионы, которые атакуют ароматическое кольцо, в то время как в присутствии хлорида алюминия скорость реакции алкилирования значительно выше скорости внутримолекулярной изомеризации. Проведение экспериментов с [1- С]метил-циклогексаном в присутствии серной кислоты и хлорида алюминия подтвердило предположение о наличии межмолекулярного гидридного переноса в условиях реакции алкилирования выделенные 1,1- и 1,3-метилфенилциклогексаны радиоактивны (табл. 4.12). Это свидетельствует об обмене между промежуточ- [c.121]


    Таким образом, при контакте 1- и 2-этилинданов с хлоридом алюминия имеет место расширение полиметиленового цикла с образованием метилтетралинов. Реакция в зависимости от положения этильной группы может идти за счет 1,2-переноса арильной или алкильной группы. В тетралин, образующийся при расширении полиметиленового цикла 1-бензил [ СеНб] индана в присутствии хлорида алюминия, переходит 90% радиоактивности исходного углеводорода. [c.169]

    Мелкодисперсную радиоактивную взвесь удаляют из воды коагулированием. Выбор коагулянта и его доза определяются пробным коагулированием. Обычно пользуются повышенными дозами коагулянта для лучшего формирования хлопьев воду подщелачивают, увеличивают концентрацию данного элемента добавлением к воде соответствующего нерадиоактивного изотопа — все это приводит к дезактивации воды. В качестве коагулянтов применяют сернокислый алюминий, сернокислое и хлористое железо, фосфаты (NaaPO и КИ2РО4), известь с активированным силикатом натрия, полиэлектролиты и т. д. [c.211]

    Искусственная радиоктивность. Оказалось, что некоторые легкие элементы, например бор, магний, алюминий, при бомбардировке а-частицами испускают позитроны. Причем испускание позитронов продолжается некоторое время после воздействия а-частиц. Значит, при бомбардировке а-частицами образуются радиоактивные атомы, обладающие определенной продолжительностью жизни, но испускающие не а-частицы и не электроны, а позитроны. Таким образом, была открыта искусственная радиоактивность. [c.94]

    РОДИЙ (Rhodium, греч. rhodon — роза) Rh — химический элемент VIII группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 45, ат. м. 102,9055, принадлежит к платиновым металлам. Имеет один стабильный изотоп i Rh, радиоактивные изотопы Р. имеют массовые числа от 96 до 110. Р. открыт в 1803 г. Волластоном, название Р. дано в связи с тем, что растворы некоторых солей Р. окрашены в розовый цвет. В природе встречается вместе с платиной и платиновыми металлами. Р.— серебристо-голубоватый металл, напоминающий алюминий, твердый, тугоплавкий, трудно поддающийся обработке, химически устойчив, нерастворим в кислотах. В соединениях в основном трехвалентен. Легко образует комплексы. Р. применяют для изготовления устойчивых покрытий с высокой отражательной способностью (прожекторов, рефлекторов и т. д.). Сплавы Р. с платиной используют для изготовления химической посуды, катализаторов, термопар, фильер, научной аппаратуры,, в ювелирном деле и т. д. Соли Р. входят в состав лекарственных препаратов, черной краски для фарфора и др. [c.215]

    Хотя эти первые работы посвящены главным образом открытию новых источников радиоактивности, в то же время все больше возрастал интерес к природе испускаемых лучей. Ркпользуя метод поглощения, Резерфорд попытался вскрыть природу этих лучей, разделив их на два общих типа. Первый тип, как было найдено, поглощался довольно тонкими пластинами алюминия, тогда как второй тип обнаруживал значительно большую проникающую способность. Первый тип был назван <з.угб а-излучением, а второй— бе/па-излучением. [c.384]

    Хотя после этих первых опытов наблюдалось большое число других ядерных превращений, только лишь в 1934 г. было выяснено, что некоторые из этих конечных ядер сами радиоактивны. Наблюдая за результатами ядерной бомбардировки различных легких элементов альфа-частицами от источника Ро, Кюри и Жолио отметили появление позитронов, кроме ол<идавшихся протонов и нейтронов, как результат (а, п)- и (а, р)-реакций. Продолжая исследования, они показали, что позитроны испускаются в результате радиоактивного распада частиц, имеющих измеримый период полураспада. На основе таких опытов был сделан вывод, что искусственно создан новый радиоактивный образец. При бомбардировке алюминия альфа-частицами образовался изотоп Р по (а, )-реакции. Изотоп Р затем распадался, испуская позитрон и образуя изотоп 81. Процессы могут быть представлены следующим образом  [c.413]

    Многие лантаноиды и их соединения применяются в различных областях науки и техники. Они используются в виде мишметалла (сплава лантаноидов с преобладающим содержанием церия и лантана) в металлургии при выплавке стали, чугуна и сплавов цветных металлов. Добавление малых количеств мишметалла повышает качество нержавеющих, быстрорежущих, жаропрочных сталей и чугуна. При введении 0,35% мишметалла в нихром срок его службы при 1000°С возрастает в 10 раз. Заметно увеличивается прочность при высоких температурах сплавов алюминия и магния при добавлении лантаноидов. Основным потребителем лантаноидов является стекольная промышленность. Цериевое стекло устойчиво по отношению к радиоактивному излучению (не тускнеет) и применяется в атомной технике. Оксиды лантаноидов входят в состав оптических стекол. Некоторые оксиды придают стеклу различную окраску. Лантаноиды и их оксиды используются как катализаторы при химических синтезах, а также в качестве материалов в радио- и электротехнике. [c.323]

    Контейнеры — защитные емкости, предназначенные для транспортировки и. хранения радиоактивных веществ (рис. 121). Они изготовляются из свинца и чугуна для уизлучателей, алюминия и карболита для р- и а-излучателей. Для хранения нейтронных источников контейнеры изготовляются из парафина, содержащего бор. Для сбора и хранения твердых и жидких радиоактивных отходов имеются специальные контейнеры. [c.331]

    На рис. 6.7, в показано изменение активности раствора при определении ионов алюминия при помощи ЭДТА в присутствии неизотопного труднорастворимого радиоактивного индикатора. [c.318]

    Главным стимулом развития химии экстремальных состояний, несомненно, являются достижения ядерной энергетики. Разве можно указать предел тем возможностям, которые открываются после поразительных успехов в применении радиоактивности к химии — спраиаивает английский физик С. Ф. Пауэлл [15]. Тот же вопрос ставит американский физик н химик Г. Т. Сиборг, рассматривая возможное влияние изобилия ядерной энергии на судьбы нашей цивилизации. Давайте перенесемся мысленно в будущее — лет на 50—100 вперед, — говорит он, рисуя при этом картину коренного преобразования отношений человека к веществу. — Можно представить себе, что к тому времени мы будем иметь гигантские электростанции, использующие энергию деления, а возможно, и синтеза ядер. Они будут вырабатывать электроэнергию, во много раз более дешевую, нежели сейчас... Это позволит нам экономичнее обессоливать морскую воду, очищать сточные воды, выгодно использовать руды с низким содержанием полезных ископаемых... полностью использовать отходы производства, так что в нашей цивилизации исчезнет само понятие отбросы . Это позволит производить самые разнообразные новые синтетические материалы и вызовет много интересных изменений в использовании природных богатств [16, с. 71—72]. Сиборг предполагает далее, что избыток электроэнергии заставит перестроить всю промышленность, которая в огромных масштабах будет перерабатывать боксит и глину в алюминий, делать сталь методом водородного восстановления, производить магний и сплавы из недефицитного сырья. В большом хо-ду будут трансурановые элементы, которые станут новым видом ядерного топлива для самых различных установок — от реакторов летательных аппаратов до искусственных сердец, вживленных в тело человека . [c.233]

    Метод испарения использован для анализа урана (UsOs), марганца, железа, хрома, кремния, вольфрама, молибдена, ванадия, титана, алюминия, бериллия, тория, плутония, циркония, тантала, кальция (отгопка в основном из их оксидов). Особенно ценен этот метод для анализа радиоактивных элементов. Примеси конденсируются в графитовом стаканчике. [c.199]

    Путем облучения алюминия а-частицами получается радиоактивный HSOTon фосфора (радиофосфор)  [c.382]

    Магний как легкий и коррозионно-стойкий металл используется в конструкционных сплавах для авиа- и автомобилестроения. В промышленности магний получают электролизом расплава Mg li или водного раствора MgS04 стронций и барий-прокаливанием SrO и ВаО с алюминием. Очень опасен для человека радиоактивный изотоп (период полураспада 28 ч), он замещает в организме кальций и накапливается в костных тканях. [c.172]

    Практически не реагируя с нейтронами, А1 взаимодействует с а-частицами большой энергии. В 1934 г. Ирен и Фредерик Жолио-Кюри облучали алюминий в течение 10 мин а-лучами полония (исполь зуемый ими образец Ро был получен Марией Склодовской-Кюри). При этом возникал радиоактивный изотоп какого-то элемента и "новое, непонятное излучение. На расшифровку происходящего явления ушел целый год. Химический анализ показал, что получающийся из А1 радиоактивный элемент переходит в газ при действии на облученный алюминий соляной кислотой. Супруги Жолио-Кюри предположили, что этот газ — фосфин, т. е. алюминий при действии на него а-лучей превращается в фосфор 2 1зА1 (а, п) °15Р. [c.51]

    Доказать химическим путем, что радиоактивный газ действительно фосфин, было чрезвычайно трудно, так мала была его концентрация и столь короткоживущим был изотоп фосфора, получавшийся из алюминия он претерпевал познтронный распад 15Р= °1451+р = 2,55 мин). Доказательство было получено методом химической аналогии — на раствор фосфата ЩЭ действовали алюминием в солянокислой среде. Оказалось, что выделяющийся водород (или алюминий в кислой среде) действительно восстанавливает фосфор до фосфнна. Это позволило утвердиться во мнении, что А1 в эксперименте превращается в фосфор, а непонятное излучение принадлежит нейтронам — частицам, не несущим заряда, с атомной массой, близкой к 1. [c.51]

    Выделившийся водород собирали в тонкостенную стеклянную трубку, а раствор подвергали упариванию. После этого соль алюминия оказалась нерадиоактивной, а водород — радиоактивным. Радиоактивность последнего обусловливалась примесью радиоактивного газа РНз, образующегося при восстановлении водородом изотопа Р. Если облученный а-частицами А1 растворять в присутствии окислителя, то фосфор окисляется в нелетучую радиоортофосфорную кислоту Нз "Р04. В этом случае радиоактивным оказывается остаток после выпаривания. [c.64]

    Характеристика. При переходе от металлов к р-металлам отмечается увеличение числа электронов (до 3—4) на внешнем уровне атомов за счет заполнения ими /з-пОдуровня. Это приводит к снижению восстановительной способности элементов и частичной утрате некоторыми из них типично металлических черт мягкости, легкоплавкости. Такие металлы, как алюминий А1, галлйй Ga, индий 1пи таллий Т1, атомы которых содержат на внешнем уровне по два s- и по одному р-электрону, входят в состав П1А-группы периодической системы элементов Д. И. Менделеева, а олово Sn и свинец РЬ, в атомах которых имеется по два внешних р-электрона, — в состав IVA-группы. К р-металлам относятся также висмут (см. гл. XIV, 3) и радиоактивный полоний Ро, в атомах которых третий и соответственно четвертый /7-электроны расположены на шестом уровне, что объясняет легкость их потери атомами и металлический характер этих элементов. [c.304]


Смотреть страницы где упоминается термин Алюминий радиоактивный: [c.455]    [c.372]    [c.110]    [c.166]    [c.168]    [c.9]    [c.138]    [c.151]    [c.271]    [c.388]    [c.173]   
Химия изотопов (1952) -- [ c.152 ]

Химия изотопов Издание 2 (1957) -- [ c.199 ]




ПОИСК







© 2024 chem21.info Реклама на сайте